二叉树

1、二叉树相关概念

结点是数据结构中的基础,是构成复杂数据结构的基本组成单位。
结点拥有的子树数目称为结点的
在这里插入图片描述
树中结点的最大层次数称为树的深度高度
在这里插入图片描述

二叉树是每个结点最多有两个子树的树结构。通常子树被称作左子树和右子树。每个节点最多有两棵子树,即二叉树不存在度大于2的节点。二叉树的子树有左右之分,其子树的次序不能颠倒。
在这里插入图片描述
满二叉树在一棵二叉树中,所有分支节点都存在左子树和右子树,并且所有的叶节点都在同一层上.

在这里插入图片描述
完全二叉树对一颗具有n个结点的二叉树按层编号,如果任一编号的节点与同样深度的满二叉树中相同编号的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树
满二叉树一定是完全二叉树,但反过来不一定成立。
在这里插入图片描述
平衡二叉树它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
在这里插入图片描述
二叉树特点:
(1)叶子结点只能出现在最下层和次下层。
(2)最下层的叶子结点集中在树的左部。
(3)倒数第二层若存在叶子结点,一定在右部连续位置。
(4)如果结点度为1,则该结点只有左孩子,即没有右子树。
(5)同样结点数目的二叉树,完全二叉树深度最小。
(6)对任何一棵二叉树,如果其叶子节点个数为N0,度为2的非叶子节点个数为N2,则N0=N2+1
(7)一棵非空二叉树的第i层上最多有2i-1个节点

2、二叉树存储结构

顺序存储
二叉树的顺序存储结构就是使用一维数组存储二叉树中的结点,并且结点的存储位置,就是数组的下标索引。
优点:存储完全二叉树,简单省空间
缺点:对一般二叉树尤其单支树,存储空间利用不理想

在这里插入图片描述
链表存储
用一种链表结构存储二叉树,这种链表称为二叉链表在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值