P R F1 等性能度量(二分类、多分类)

总结自《机器学习》周志华 2.3

目录

最常用的是查准率P(precision),查全率R(recall),F1

一、对于二分类问题

二、对于多分类问题

1.macro

2.micro


最常用的是查准率P(precision),查全率R(recall),F1

一、对于二分类问题

混淆矩阵(confusion matrix):
 

 预测结果  
真实情况正例 反例 
正例 TP,true positive,真正FN,false negative 假反
反例 FP ,false positive,假正TN,true negative 真反

P = \frac{TP}{TP+FP}      查准率=真正 / (真正+假正) = predicted and true positive/ predicted positive

R= \frac{TP}{TP+FN}   查全率= 真正 /(真正+假反) = predicted and true positive/ true positive

P , R是一对矛盾的度量,一般一个的值高了,另一个的值就会降低,

P-R图:

若学习器A的 P-R曲线 将学习器B的 P-R曲线 完全包住,则学习器A 在该问题上 优于 B

若A B的P-R曲线有交叉, 则比较P-R曲线下面积的大小,越大越好

 

平衡点 break even point BEP,是P==R 时的取值

F值度量:

F1=\frac{2\times P\times R}{P+R}                                F1=\frac{2\times TP}{n+TP-TN}    ,n为样例总数

F_{\beta }=\frac{(1+\beta^{2})\times P\times R}{(\beta^{2}\times P)+R}          β>1,R有更大影响,β<1,P有更大影响

 

二、对于多分类问题

多分类问题,每两两类别组合,构成n个二分类问题,每个二分类问题对应一个混淆矩阵

1.macro

先在各个混淆矩阵上分别计算P,R, 再求平均得到 宏查准率macro-P, 宏查全率macro-R,

基于宏查准率macro-P, 宏查全率macro-R,计算 宏F1 macro-F1

macro-P=\frac{1}{n}\sum_{i=1}^{n}P_i             macro-R=\frac{1}{n}\sum_{i=1}^{n}R_i

marco-F1=\frac{2\times macroP\times macroR}{marcoP+marcoR}

2.micro

将各个混淆矩阵的对应元素进行平均,得到TP,FP,TN,FN的平均值:\overline{TP} , \overline{FP}, \overline{TN}, \overline{FN}

micro-P=\frac{\overline{TP}}{\overline{TP}+\overline{FP}}      micro-R=\frac{\overline{TP}}{\overline{TP}+\overline{FN}}

micro-F1=\frac{2\times microP\times microR }{microP+microR}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值