一种几乎出现在任何学科中的重要哲学思想

一.简介

      喜欢观察生活的朋友可能会发现,任何复杂的场景都由一些简单的事物组成,比如,你漫步在公园当中,沉浸在美景之中,你会发现这番美景由一个个简单元素组成,大树,小草,小花等等,如果你去仔细观察其中一个元素,你会发现,这个看似简单的元素又是由复杂的各个元素组成,不断追寻下去,也许你可以得到这么一个结论:复杂世界是由简单的微粒组成。

    也许,你会疑惑,这有什么用,他是和不是又如何呢,我并不关心这件事。事实上,在历史上,当一些伟大的哲学家提出他们深刻的思想后,当时的人们也会认为他们不务正业,整天想着一些没意义的东西,可是,人们慢慢发现,这句看似无用的话却蕴含着强大的力量。

二.这种哲学思想在数学中的应用

    早在初中的时候,也许你已经学过了函数,那他是做什么的呢,他是寻找两组数之间的关系,而数往往又是被抽象出来的某个事物的某个属性,比如,今天的温度,就可以抽象成一系列数,所以简单来说,函数是想研究现实世界中不同事物之间的关系。可是,现实世界有如此多的复杂的关系,几乎随便找两个关系都会发现他们之间几乎没有共同点,这该如何下手研究,还记得刚才那个哲学思想吗,引申一下就是,任何复杂的事物都是由简单的事物组成,所以,数学家们寻找到了一些简单而基本的函数,也就是我们学过的简单基本初等函数,比如三角函数,对数函数,指数函数,幂函数等等,而加减乘除复合成为了他们进行组合的工具,通过组合,他们几乎可以表达出现实世界绝大部分的关系。

     这里是用函数进行举例,类似的事例简直太多了,比如,你会发现只是知道一些简单的函数的导数,就可以利用他们求出大量复杂函数的导数,同样,你只知道一些简单的积分结论,就可以求出很多复杂的积分。当你真正意识到这一点之后,再去学习,你就会发现几乎可以在任何地方看到这种思想,只是之前没有注意过。

三.这种哲学思想在其他学科中的应用

      在3D建模中,一个复杂的装配体可能由很多简单的子装配体组成,而简单的子装配体又有很多零件组成,而一个零件又由很多简单基本的特征组成,而这种建模方法从何而来,正是来源于这种思想。

     如果你学过编程,那你一定知道模块化思想,写代码时会用函数对各种功能的代码进行封装,然后由这些模块组成了更复杂的功能,功能简单的基本代码组成了一个个模块,一个个模块又组成了更复杂的功能

    如果你曾经好奇过电脑为何如此神奇,一个小小的屏幕,竟然可以实现如此多功能,如果为此你去查找各种资料,一开始,你会看到各种逻辑门知识的讲解,你一定会疑惑,如此复杂强大的电脑为啥会和这些有关,在不断学习中,你会发现这些简单的东西进行各种组合竟然可以实现如此多复杂的功能,最后甚至是如此复杂的电脑。

 

三.为何这种思想可以用在各种学科之中

     就像人们经常会疑惑,为什么数学是正确的,好多时候,数学推理出各种不符合常识的结论,可最后却发现,原来是我们的认知局限了。可是为什么数学是对的呢?我想也许这是真理在不同纬度的投影吧。而这里的问题我想同样也是如此。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值