基于单边jacobi的奇异值分解(SVD)

本文介绍了如何使用单边Jacobi算法进行奇异值分解(SVD)。首先,简述了双边Jacobi的思想,然后重点讲解了单边Jacobi算法的巧妙之处,即通过迭代将矩阵转换为正交阵。最后,提供了在MATLAB上的实现伪代码,并探讨了列范数排序的重要性以及在实际操作中的一些注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于单边jacobi的奇异值分解(SVD)

对于奇异值分解(SVD),相信很多学过线性代数/高等代数的同学都不会很陌生,但是怎么实现呢?接下来就来详细说说。


  为了方便讨论,本文所有的讨论仅限定于实数空间。奇异值分解的含义就是将矩阵A分解成一个酉矩阵U,一个准对角矩阵S还有一个酉矩阵V。首先要说明一点,SVD分解是存在的但不唯一,这个有兴趣的读者可以思考一下。利用数学公式可以写成:

 A=USV AMN UMM SMN V
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值