二进制温柔
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
61、关系数据上的条件排名:方法与实验
本博文探讨了在关系数据上解决条件排名问题的方法,包括现成排名算法、基于共轭梯度法的方法以及闭式解方法,并通过石头-剪刀-布合成数据集和20-新闻组真实数据集验证了方法的有效性。实验结果表明,引入领域知识(如互惠核和对称核)可以提升模型性能,同时根据任务特点选择合适的方法能够有效解决条件排名问题。原创 2025-08-23 07:14:38 · 34 阅读 · 0 评论 -
60、关系数据上的条件排序
本文探讨了关系数据上的条件排序问题,提出了一种基于图表示和再生核希尔伯特空间(RKH)的通用框架。文中详细分析了对称和互惠这两种特殊关系的性质及其在条件排序中的应用,并通过损失函数的设计和优化策略实现了高效的排序算法。此外,文章还讨论了条件排序与传统排序任务的联系,并通过实验验证了所提出方法的有效性。最后,文章总结了主要贡献,并指出了未来的研究方向,如复杂关系建模、算法优化和实际应用拓展。原创 2025-08-22 12:05:43 · 27 阅读 · 0 评论 -
59、易变物品个性化推荐与关系数据条件排名研究
本文探讨了易变物品的个性化推荐方法以及基于关系数据的条件排名研究。通过分析eBay用户的搜索查询数据,研究展示了如何利用LDA模型及其扩展方法实现更精准的推荐,并提出了一种通用的核框架用于处理关系数据中的条件排名问题。文章还讨论了相关方法的优势、挑战以及未来研究方向,包括引入时间因素、比较方法效率与效果、进行大规模数据基准测试。原创 2025-08-21 10:43:15 · 23 阅读 · 0 评论 -
58、易变物品个性化推荐的主题建模
本文提出了一种基于搜索查询的个性化推荐方法,用于解决物品高度易变场景下的主题建模问题。通过将用户和物品映射到共同的潜在主题空间,该方法能够高效地处理新用户和新物品的加入,并实现多样性和相关性的推荐。文章详细介绍了生成模型的设计、个性化推荐的步骤、模型的学习和推理过程,以及该方法在电商平台和新闻推荐等场景的应用。最后探讨了未来在结合更多元数据、优化模型结构以及跨领域应用等方面的发展方向。原创 2025-08-20 10:15:52 · 16 阅读 · 0 评论 -
57、约束编程与项集挖掘集成及主题建模在易变项个性化推荐中的应用
本文探讨了约束编程与项集挖掘集成的方法,重点介绍了PropCoverage和PropFrequency算法的实现与优化,并结合复杂度分析和图挖掘问题示例展示了其在不同数据集上的应用效果。此外,还介绍了主题建模在易变项个性化推荐中的应用框架,提出了利用元数据优化推理的方法,并通过实验验证了其有效性。通过这些研究,展示了约束编程、项集挖掘和主题建模在数据挖掘和推荐系统中的重要价值和广阔前景。原创 2025-08-19 10:49:29 · 15 阅读 · 0 评论 -
56、集成约束编程与项集挖掘:算法分析与优化策略
本文探讨了项集挖掘与约束编程的结合方法,分析了Eclat算法和约束编程系统的基本原理,并对两者在数据表示、搜索策略和计算效率等方面进行了对比。基于此,提出了一种集成方法,通过布尔向量变量、多种数据表示支持、通用矩阵约束、辅助存储和高效传播器等机制,减少了冗余计算,提高了项集挖掘的效率和约束编程的通用性。原创 2025-08-18 14:16:56 · 27 阅读 · 0 评论 -
55、改进的MinMax割图聚类与非负松弛及约束编程与项集挖掘融合
本文探讨了数据挖掘和图聚类领域的两项重要研究成果:一是改进的MinMax割图聚类与非负松弛方法,通过三种对称化策略提升了聚类的平衡度和准确率;二是约束编程与项集挖掘的融合框架,通过优化数据表示和传播机制,提高了项集挖掘的效率和通用性。实验结果显示,非负MinMax割在多个基准数据集上优于传统的Ratio Cut和Normalized Cut方法,而改进后的约束编程系统在性能上与专门的项集挖掘系统相当。未来的研究方向包括算法优化、多领域应用以及理论深入研究。原创 2025-08-17 16:09:59 · 25 阅读 · 0 评论 -
54、改进的带非负松弛的MinMax割图聚类
本文提出了一种改进的带非负松弛的MinMax割图聚类方法,通过引入非负约束,使解更接近理想的类别指示矩阵,从而直接为数据点分配聚类标签。与传统谱松弛方法相比,该方法无需额外的聚类步骤,如K-means,并且能够生成更平衡、准确的聚类结果。文中还提出了两种高效算法来解决该优化问题,并通过理论分析和实验验证了其优越性。实验结果显示,该方法在多个真实世界数据集上均显著优于传统方法,具有良好的收敛性和稳定性。原创 2025-08-16 14:25:17 · 30 阅读 · 0 评论 -
53、马尔可夫逻辑网络中因果独立性的利用
本文探讨了在马尔可夫逻辑网络(MLN)中利用因果独立性的方法。通过引入组合规则,提出了一种在无向模型中表示可分解组合规则的算法,并推导了等效子句和所需子句数量的界限。研究还介绍了从组合规则到MLN子句的转换过程,并引入MLN宏以简化领域专家指定规则的方式。实验结果表明,在少量规则的情况下,使用组合规则的MLN+在Cora和UW-CSE数据集上均优于默认MLN(MLN*),在AUC-ROC、AUC-PR和似然度指标上表现更优。同时,研究还实现了推理算法的优化,显著提高了推理效率。未来的研究方向包括开发专门的推原创 2025-08-15 10:24:16 · 30 阅读 · 0 评论 -
52、马尔可夫逻辑网络中因果独立性的利用
本文探讨了在马尔可夫逻辑网络(MLNs)中如何利用因果独立性,通过可分解的组合规则表示和学习多层面的组合函数。文章介绍了组合规则基础、可分解组合函数的概念,以及如何将其转换为MLNs中的条款表示。同时,详细分析了基于平均和噪声组合函数的转换方法,并以医疗诊断为例说明了实际应用流程。最终,总结了该方法的优势,并展望了未来的研究方向。原创 2025-08-14 10:48:16 · 34 阅读 · 0 评论 -
51、结构化稀疏正则化与马尔可夫逻辑网络的因果独立性利用
本文探讨了结构化稀疏正则化的近端方法以及马尔可夫逻辑网络中因果独立性的利用。在结构化稀疏正则化方面,研究了严格凸惩罚项对迭代过程的影响,并分析了不同参数对预测性能、稀疏性和计算效率的作用。在马尔可夫逻辑网络方面,研究展示了如何将有向模型中的组合规则转化为MLN表示,从而提升模型的学习质量和参数估计效果。这两项研究为机器学习和统计关系学习提供了重要的理论支持和实践指导。原创 2025-08-13 12:46:14 · 24 阅读 · 0 评论 -
50、近端方法求解结构化稀疏正则化问题
本文探讨了如何利用近端方法求解结构化稀疏正则化问题,介绍了相关算法的理论基础、迭代优化过程及其收敛性分析。重点讨论了在目标函数中添加严格凸扰动项对算法性能的影响,并通过实验验证了不同正则化方案在预测误差、稀疏性水平和运行时间上的表现。文章为结构化稀疏学习问题提供了高效的优化框架,并展望了未来的研究方向。原创 2025-08-12 16:42:49 · 29 阅读 · 0 评论 -
49、需求驱动的标签推荐与结构化稀疏正则化求解
本文探讨了一种基于需求驱动的标签推荐方法——LATRE,并结合结构化稀疏正则化技术,以提高推荐的精度和计算效率。通过对Delicious、LastFM和YouTube三个数据集的实验分析,验证了LATRE在不同标签数量范围下的优越性能,并探讨了校准机制和复杂规则在不同场景下的作用。同时,文章还介绍了结构化稀疏正则化的应用价值,并展望了未来在Web 2.0文本特征、推荐标签利用及近端方法拓展等方面的研究方向。原创 2025-08-11 10:30:15 · 23 阅读 · 0 评论 -
47、基于MDP指标的示范学习与需求驱动的标签推荐
本博客探讨了基于马尔可夫决策过程(MDP)的示范学习与需求驱动的标签推荐方法LATRE。基于MDP的示范学习利用MDP结构限制策略集合,通过主动采样提高样本效率,适用于机器人等应用;而LATRE方法则通过规则提取、标签排序和得分校准,解决了传统标签推荐中计算复杂度高和得分失真问题。博客还分析了两种方法的技术细节、优势与挑战,并展望了未来研究方向,如连续MDP指标的高效计算与LATRE在更多场景的应用探索。原创 2025-08-09 10:49:55 · 20 阅读 · 0 评论 -
46、利用MDP度量进行示范学习
本文探讨了利用马尔可夫决策过程(MDP)度量进行示范学习的相关方法,包括逆强化学习(IRL)、监督学习以及基于MDP度量的核分类方法。通过实验分析,基于MDP度量的方法在分类性能和泛化能力方面显著优于传统方法,尤其在处理噪声数据和降低样本复杂度方面表现出色。文章还探讨了该方法在机器人控制、游戏策略学习等实际场景中的应用潜力及未来发展方向。原创 2025-08-08 09:37:12 · 25 阅读 · 0 评论 -
45、一阶贝叶斯球与基于MDP诱导度量的示范学习
本文探讨了两种高效的问题求解方法:一阶贝叶斯球(FOBB)和基于MDP诱导度量的示范学习。FOBB通过快速定位概率逻辑模型中的最小相关网络(MRN),显著提升了推理效率,尤其在结合提升推理方法时表现出色。而基于MDP诱导度量的示范学习方法则通过利用MDP结构,将示范学习转化为分类问题,增强了策略学习的泛化能力并降低了计算成本。两者分别在概率推理和策略学习领域展现了广泛的应用潜力。原创 2025-08-07 12:18:38 · 31 阅读 · 0 评论 -
44、一阶贝叶斯球算法:原理与实现
本文详细介绍了基于贝叶斯球原理的一阶贝叶斯球(FOBB)算法,该算法通过将概率逻辑模型转换为等效贝叶斯网络,在一阶层面上高效地计算最小相关网络(MRN)。文章深入解析了贝叶斯球的移动规则、参数化贝叶斯网络(PBN)的结构、等效贝叶斯网络(EBN)的构建方式以及FOBB算法的具体实现步骤,包括初始化、调度访问、分裂操作、传递球和标记分配等核心内容。FOBB算法通过引入一阶节点、约束、分裂和投影等概念,实现了对大规模概率逻辑模型的高效处理,为概率推理提供了强有力的支持。原创 2025-08-06 10:22:53 · 34 阅读 · 0 评论 -
43、分子图模式挖掘与一阶贝叶斯球算法研究
本博客围绕分子图模式挖掘和一阶贝叶斯球算法展开研究,重点介绍了在分子图数据中使用 nop、msa 和 nls 方法进行特征选取与结构匹配,并提出 LAST-PM 特征在多个数据集上显著优于传统方法。同时,针对概率逻辑推理中的效率瓶颈问题,提出了一阶贝叶斯球(FOBB)算法,通过在一阶层面上直接操作,显著提高了推理效率。实验结果表明,两种方法在各自领域具有重要的研究价值和应用前景。原创 2025-08-05 15:54:09 · 40 阅读 · 0 评论 -
42、潜在结构模式挖掘(LAST - PM)技术解析
本博文深入解析了潜在结构模式挖掘技术(LAST-PM),涵盖其核心步骤如冲突检测与解决、停止标准设定、潜在结构图计算等内容,并结合实验验证其在化学数据集上的有效性。文章适合关注数据挖掘、图结构分析和模式发现的读者。原创 2025-08-04 09:36:27 · 16 阅读 · 0 评论 -
41、数据流分类与新类检测及潜在结构模式挖掘
本文探讨了数据流分类与新类检测以及潜在结构模式挖掘的相关技术和方法。在数据流分类方面,比较了 DXMiner、Lossy-F、Lossy-L 和 O-F 等方法的性能,结果显示 DXMiner 在分类准确性和运行效率方面表现优异。在潜在结构模式挖掘部分,介绍了 LAST-PM 方法,该方法通过自下而上的策略挖掘图数据中的潜在结构特征,在生化领域具有重要应用价值。文章还对两种技术进行了对比分析,并提出了实际应用建议及未来研究方向。原创 2025-08-03 12:08:45 · 29 阅读 · 0 评论 -
40、数据流分类与新类检测技术详解
本文详细探讨了数据流分类与新类检测的关键技术,包括特征提取与选择、模型训练与更新、分类与新类检测以及特征空间转换等内容。重点分析了预测性特征选择与信息性特征选择的适用场景,介绍了三种特征空间转换方法并比较其优缺点,同时讨论了新类检测中q-邻域轮廓系数(q-NSC)的应用及影响因素。通过实验验证,这些技术在不同数据集(如Twitter、ASRS、KDD和Forest)上表现出良好的适应性和准确性。最后,文章提出了实际应用中的建议,以提升数据流处理的效果。原创 2025-08-02 10:29:51 · 19 阅读 · 0 评论 -
39、数据聚类与流分类技术深度解析
本博文深入解析了数据聚类与流分类技术,重点介绍了属性聚类和项目集频率估计的应用,以及DXMiner在动态特征空间中处理数据流分类的能力。文章对比了多种流分类方法,并展示了DXMiner在解决无限长度、概念漂移、概念演化和特征演化等挑战方面的优势。此外,还提供了实验结果与未来研究方向,为数据处理和分析领域提供了有价值的参考。原创 2025-08-01 15:02:36 · 24 阅读 · 0 评论 -
38、基于聚类的事务数据库属性总结方法
本文介绍了一种基于聚类的事务数据库属性总结方法,旨在通过发现数据中的结构信息,提供简洁且高效的数据表示。该方法利用代码表和描述长度理论,结合贪心算法进行属性聚类,并支持高效的数据查询。实验表明,该方法能够有效捕捉数据内在结构,并在多个真实和合成数据集上验证了其优越性。同时,文章还分析了算法的凸性、复杂度以及与其他总结技术的比较,为未来的研究方向提供了思路。原创 2025-07-31 13:55:17 · 25 阅读 · 0 评论 -
37、对抗性在线学习与数据摘要方法解析
本博客深入解析了对抗性在线学习中的ALBC和ALF算法,重点讨论了其在Lipschitz函数环境下的遗憾分析与实际实现方法。同时,介绍了基于聚类和最小描述长度(MDL)原则的二进制数据摘要方法,展示了如何高效构建数据概览并实现特征选择。文章涵盖了从理论推导到实验应用的完整分析,为处理复杂在线学习任务和大规模数据摘要提供了有效工具。原创 2025-07-30 09:13:02 · 33 阅读 · 0 评论 -
36、对抗 Lipschitz 环境中的在线学习
本文探讨了在对抗Lipschitz环境下的在线学习问题,重点分析了ALF算法的理论边界及其在不同采样技术(如均匀网格和PMC采样)下的实现效果。通过理论推导和数值实验,比较了不同采样方法的优劣,并将ALF算法应用于在线回归、在线分类以及带老虎机信息的分类问题,展示了其广泛的应用前景。原创 2025-07-29 09:34:33 · 19 阅读 · 0 评论 -
35、半监督学习与对抗性Lipschitz环境下的在线学习
本博客主要探讨了半监督学习和对抗性Lipschitz环境下的在线学习方法。在半监督学习部分,重点介绍了受限参数估计方法在最近均值分类器(NMC)中的应用,并通过实验验证其性能优于传统监督和自学习方法。在线学习部分提出了一种基于Lipschitz假设的ALF算法,并分析了其在全信息和部分信息设置下的表现。同时,还比较了不同采样技术对算法性能的影响。博客总结了这两种方法的理论意义和实际应用潜力,并提出了未来研究方向。原创 2025-07-28 10:30:12 · 26 阅读 · 0 评论 -
34、半监督学习中的约束参数估计:最近均值分类器案例
本文研究了在半监督学习框架下,通过约束参数估计改进最近均值分类器(NMC)的方法。通过理论分析和实验验证,展示了半监督NMC如何利用无标签数据提升分类性能,同时避免了传统半监督方法对数据假设的依赖和性能不稳定的问题。结果表明,在多数情况下,半监督NMC能够有效提高分类准确率,尤其适用于有标签数据稀缺的场景。原创 2025-07-27 14:15:23 · 19 阅读 · 0 评论 -
33、利用SCiForest检测聚类异常值
本文探讨了SCiForest在聚类异常值检测中的性能,并与iForest、ORCA、LOF和一类SVM等其他异常检测方法进行了比较。通过实验分析,SCiForest在全局和局部聚类异常值检测方面表现出显著优势,同时在分散异常值检测和处理时间上也具有良好的性能。文章还讨论了SCiForest对未见过异常值的检测机制,并给出了实际应用建议和未来研究方向。原创 2025-07-26 15:39:06 · 25 阅读 · 0 评论 -
32、基于SCiForest检测聚类异常值
本文介绍了SCiForest,一种专门用于高效检测聚类异常(尤其是局部聚类异常)的异常检测方法。通过引入分裂选择标准Sdgain和随机超平面,SCiForest能够有效分离聚类异常和正常点,克服了传统基于距离、密度和聚类方法的局限性。实验表明,SCiForest在不同场景下均表现出优异的性能和鲁棒性,具有较低的时间和空间复杂度,为异常检测领域提供了一种高效的解决方案。原创 2025-07-25 11:44:02 · 37 阅读 · 0 评论 -
31、集体交通预测:基于GS - MLN的创新方法
本文提出了一种基于GS-MLN(基于梯度的马尔可夫逻辑网络)的创新方法,用于集体预测交通网络中多个节点的未来拥堵状态。该方法结合了逻辑推理与概率学习,并利用神经网络处理连续特征向量,实现了对时空交通数据的高效建模。实验基于加利福尼亚的PeMS传感器数据集,证明了GS-MLN在多时间点交通拥堵预测中的优越性能,尤其是在长预测范围和不平衡数据上的表现。此外,该方法在处理数据缺失问题方面也展现出更强的鲁棒性。研究还表明,该方法不仅适用于交通管理,还可推广到空气污染监测和经济时间序列分析等领域。原创 2025-07-24 10:20:08 · 21 阅读 · 0 评论 -
30、复杂领域模型自适应与交通预测技术探索
本文探讨了复杂结构化领域的自动模型自适应技术与集体交通预测方法。通过提出高效的模型选择策略,如全局策略和爬山策略,在幻想足球预测任务中实现了优于支持向量回归器和人类专家的性能表现。在交通预测方面,引入了接地特定马尔可夫逻辑网络(GS-MLNs),结合逻辑知识与概率推理,有效处理了交通网络中空间与时间维度的关系任务。文中还分析了两项技术的应用潜力、实际案例、未来发展趋势及挑战,为相关领域的研究和应用提供了有价值的参考。原创 2025-07-23 14:15:56 · 19 阅读 · 0 评论 -
29、复杂结构化领域的自动模型自适应
本文介绍了一种在复杂结构化领域中实现自动模型自适应的方法,包括理论基础、模型搜索技术和在梦幻足球领域的具体应用。通过最小描述长度和强凸性条件提供理论保证,结合两种模型搜索策略,实现了对合适模型结构的自动选择。以梦幻足球为例,利用球员数据进行建模,并通过实验验证该方法的有效性,结果显示其预测性能优于支持向量回归和人类专家预测。原创 2025-07-22 12:58:58 · 23 阅读 · 0 评论 -
28、关联规则鲁棒性与自动模型自适应探索
本博客探讨了数据挖掘和机器学习领域中的两个关键主题:关联规则的鲁棒性与自动模型自适应。关联规则的鲁棒性研究帮助我们筛选出稳定且有价值的规则,尤其在面对数据变化时依然保持准确性。而自动模型自适应技术则通过高效的搜索策略,在大量候选模型中找到最优模型,避免了传统方法的高计算成本。文章还分析了鲁棒性应用的挑战、模型自适应的影响因素及优化策略,并展望了未来研究方向。原创 2025-07-21 11:43:34 · 14 阅读 · 0 评论 -
27、关联规则的鲁棒性度量研究
本文研究了关联规则中的鲁棒性度量,探讨了鲁棒性的定义、计算方法及其在实践中的应用。通过实验分析,比较了鲁棒性与统计显著性的差异,并揭示了鲁棒性在规则选择中的重要性。研究还涉及多种平面度量方法,如置信度、Jaccard、Sebag-Shoenauer等,并评估了它们在不同数据集上的表现。原创 2025-07-20 09:18:05 · 22 阅读 · 0 评论 -
26、开放词汇标签下的音乐标签学习与关联规则鲁棒性研究
本文探讨了开放词汇标签下的音乐标签学习方法以及关联规则的鲁棒性评估。通过Mechanical Turk实验验证了标签方法在标注任务中的优势以及主题方法在检索任务中的有效性。同时,提出了关联规则鲁棒性的定义及其在商业分析中的应用价值。未来研究将聚焦于多模态融合、实时标签更新以及大规模数据下的鲁棒性评估。原创 2025-07-19 16:15:33 · 26 阅读 · 0 评论 -
25、开放词汇标签下的音乐标签学习研究
本文探讨了开放词汇标签下的音乐标签学习研究,重点分析了Topic Method与Tag Method在可行性、效率、标注与检索性能等方面的表现。通过实验验证,Topic Method在训练效率和常见标签标注方面表现优异,而Tag Method则在稀有标签生成上更具优势。同时,研究还涉及了数据集特点、人类评估的意义与挑战,以及未来研究方向和实际应用案例。研究结果为音乐标签技术在推荐系统、音乐检索等领域的应用提供了重要参考。原创 2025-07-18 10:48:49 · 22 阅读 · 0 评论 -
24、高效处理评论语料与音乐标签的技术探索
本文探讨了高效处理评论语料与音乐标签的技术方法。通过ReviewSkyline算法验证了评论语料处理的可扩展性,并展示了其在大规模数据集上的高效性能。同时,针对音乐标签学习的挑战,提出了一种基于主题模型的新方法,能够有效缓解标签的碎片化、稀疏性和可扩展性问题。研究还强调了在开放词汇任务中人工评估的重要性。这些技术在多媒体信息检索、推荐系统和内容管理等领域具有广泛的应用前景。原创 2025-07-17 16:59:04 · 23 阅读 · 0 评论 -
23、高效自信的大型评论语料库搜索
本文介绍了一种在大型评论语料库中进行高效自信搜索的方法。通过定义评论的共识、意见强度和置信度,提出了过滤冗余评论的ReviewSkyline算法和选择紧凑评论集的Greedy-Reviewer算法。这些方法结合了天际线算子和加权集合覆盖问题的解决方案,有效减少了冗余信息并提升了搜索效率。实验评估表明,该框架在多个真实数据集上表现优异,为电商平台、旅游平台等应用场景提供了有价值的信息筛选机制。原创 2025-07-16 11:22:51 · 17 阅读 · 0 评论 -
22、高效搜索:关系世界探索与评论语料筛选
本文探讨了高效搜索在两个不同领域中的应用:一是关系世界中的探索问题,通过关系探索策略改进机器人在复杂环境中的决策规划;二是大型评论语料库中的高效自信搜索,提出了信心评估、冗余过滤和查询评估等步骤,帮助用户从海量评论中筛选高质量信息。文章展示了相关实验结果与技术框架,并展望了未来可能的技术融合方向。原创 2025-07-15 15:07:43 · 24 阅读 · 0 评论 -
21、关系世界中的探索:算法与实验分析
本博文探讨了在关系领域中进行探索的方法,重点分析了NID规则的应用、不同类型的密度估计技术,以及基于这些技术构建的探索算法Rex和opt-Rex。通过一系列实验评估,比较了命题和关系探索方法在成功率、动作数量和知识迁移能力上的差异。实验结果表明,关系探索方法在复杂环境中的性能显著优于命题方法,且具备良好的扩展性和泛化能力。原创 2025-07-14 16:15:50 · 20 阅读 · 0 评论