【Matlab光伏功率预测】基于卷积神经网络的多变量光伏功率预测(附MATLAB代码)
文章介绍
- 基于卷积神经网络(Convolutional Neural
Network,CNN)的回归光伏功率预测是一种利用CNN模型来预测光伏发电系统的功率输出。
CNN是一种深度学习模型,主要用于图像处理和计算机视觉任务,但也可以应用于序列数据的预测问题。在光伏功率预测中,可以将时间序列数据视为一维的图像,并利用CNN模型来捕捉时间序列中的特征和模式。
CNN模型的性能和预测能力取决于模型的结构、层数、卷积核的大小等因素。在应用基于CNN的回归光伏功率预测时,需要进行适当的调参和模型优化,以提高预测的准确性。此外,特征提取和数据转换的方式也会对预测结果产生影响,需要根据具体问题进行合适的处理。
光伏功率预测可能受到多种因素的影响,如天气、季节性等,可以考虑将这些因素作为附加的输入特征进行处理,以提高预测精度。
基本步骤
基于卷积神经网络的回归光伏功率预测的基本步骤如下:
1.数据收集:收集历史光伏功率时间序列数据,包括时间戳和对应的功率输出。
2.数据预处理&