【GRU回归预测】基于黏菌算法优化注意力机制卷积神经网络结合门控循环单元SMA-Attention-CNN-GRU实现数据多维输入单输出预测附matlab代码
文章目录
运行结果
文章介绍
SMA-Attention-CNN-GRU模型是将黏菌算法优化的注意力机制与卷积神经网络(CNN)和门控循环单元(GRU)结合起来,以处理多维输入数据并进行单输出的预测任务。以下是该模型的介绍:
- 多维输入数据:模型处理的输入数据是多维的,每个样本包含多个特征维度。这些特征维度可能具有不同的重要性对于预测任务,因此需要一种机制来自适应地选择和聚合这些特征。
- 黏菌算法优化的注意力机制:注意力机制用于对输入数据的特征维度进行加权聚合,以提取对预测任务重要的特征。SMA-Attention使用黏菌算法来优化注意力权重&