【GRU回归预测】基于黏菌算法优化注意力机制卷积神经网络结合门控循环单元SMA-Attention-CNN-GRU实现数据多维输入单输出预测附matlab代码

41 篇文章 54 订阅 ¥39.90 ¥99.00
36 篇文章 43 订阅 ¥39.90 ¥99.00
24 篇文章 36 订阅 ¥39.90 ¥99.00
本文介绍了一种基于黏菌算法优化的注意力机制卷积神经网络SMA-Attention-CNN-GRU模型,用于处理多维输入数据的单输出预测。模型利用注意力机制选择重要特征,结合CNN和GRU处理局部特征和时间序列依赖,适用于数据预测任务。
摘要由CSDN通过智能技术生成

【GRU回归预测】基于黏菌算法优化注意力机制卷积神经网络结合门控循环单元SMA-Attention-CNN-GRU实现数据多维输入单输出预测附matlab代码

运行结果

在这里插入图片描述
在这里插入图片描述

文章介绍

SMA-Attention-CNN-GRU模型是将黏菌算法优化的注意力机制与卷积神经网络(CNN)和门控循环单元(GRU)结合起来,以处理多维输入数据并进行单输出的预测任务。以下是该模型的介绍:

  1. 多维输入数据:模型处理的输入数据是多维的,每个样本包含多个特征维度。这些特征维度可能具有不同的重要性对于预测任务,因此需要一种机制来自适应地选择和聚合这些特征。
  2. 黏菌算法优化的注意力机制:注意力机制用于对输入数据的特征维度进行加权聚合,以提取对预测任务重要的特征。SMA-Attention使用黏菌算法来优化注意力权重&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值