组会报告
文章平均质量分 89
组会报告记录
k__opp
这个作者很懒,什么都没留下…
展开
-
基于CNN-BiGUR的恶意域名检测方法
卷积神经网络(CNN)被设计用于高效提取恶意域名中的字符级局部上下文特征,通过使用不同大小的卷积核并行处理字符序列,每个卷积核负责捕捉不同粒度的特征,同时利用256个滤波器来增强特征的捕捉能力;此外,模型还引入了K-Max平均池化方法,它结合了最大池化和平均池化的优点,通过选取K个最大值并计算平均值来保留更多的特征信息,这种方法不仅减少了特征维度,还保留了原始特征的强度,确保了从样本中提取出最有效的特征。融合后的特征向量包含了字符级和时序级的信息,为分类提供了丰富的特征表示。原创 2024-09-10 14:15:19 · 1145 阅读 · 0 评论 -
基于字符和词特征融合的恶意域名检测
CWNet模型是基于字符级和词级特征融合的检测模型,这种融合方法能够更全面地提取域名中的特征信息。模型通过提取域名中的字符特征和词级特征,并进行特征融合,以捕获域名字符串中的深层信息。与现有模型相比,CWNet模型对域名字符串所提供的信息利用度更高,这表明其在特征提取和利用方面更为有效。通过在开源数据集上进行测试,实验结果验证了CWNet模型的有效性。模型表明,利用字符和词融合特征可以显著提高对DGA(域名生成算法)域名的检测性能,尤其是对那些由随机单词组成的DGA域名。原创 2024-07-02 16:25:06 · 1203 阅读 · 3 评论 -
恶意域名检测研究与应用综述
它包含三级域名,在第三级域中,除字母“j”之外,从元音和辅音中随机交替的挑选字母,因此随后的字母总是来自其他字符类这样选取的字符组成的域名几乎是可读的。:王红凯等人提出了一种基于随机森林的随机域名检测方法,该方法通过人工提取的域名长度、域名字符信息熵分布、元音辅音比、有意义的字符比率等特征来构建随机森林模型进行训练和分类,实现对随机域名的检测。:随着僵尸网络变得更加复杂和智能化,现有的检测方法面临挑战,包括网络流的部分特征无法完全表征僵尸网络的异常行为,以及攻击者可能设计新的DGA算法来绕过某些固定特征。原创 2024-07-02 12:06:30 · 971 阅读 · 0 评论