Anaconda+VSCode 配置 tensorflow 环境

1. Anaconda下载

1.1 去清华镜像站https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ 下载旧的版本,不要去官网下载新版本,可能会出现anaconda-navigator找不到的情况;

下载过程

不勾选添加环境变量(Add Anaconda to my PATH environment variable),后需手动添加(否则cmd出现“conda”不是内部或者外部命令)。

不勾选Register Anaconda as my default Python 

其余默认

        添加环境变量:双击path

        1是Python需要,2是conda自带脚本,3是jupyter notebook动态库,4不知道,5是使用C with python的时候

                ​​

1.2 已经下载了官方版本,找不到anaconda-navigator:

①添加环境变量后,唤起cmd,执行conda install anaconda navigator

②可能在\Anaconda3\pkgs\anaconda-navigator-1.9.7-py37_0\Scripts这里

③不通过清爽的anaconda-navigator里配置tensorflow环境,直接在丑陋的(dbq)anaconda-prompt配置

④新找到的方法:

打开cmd,打开anaconda所在目录(例如我的:cd/dD:\anaconda\anaconda3),之后执行python .\Lib\_nsis.py mkmenus,就好了!!!!!!!!

1.3 配置国内镜像源

在命令后加清华镜像源:-i https://pypi.tuna.tsinghua.edu.cn/simple

在cmd或anaconda prompt中运行:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/


//在下载时显示使用的源
conda config --set show_channel_urls yes

//换回conda的默认源
conda config --remove-key channels

检查是否配置完毕:

conda config --show channels

//或者

conda info
 

2. 在Anaconda中配置Tensorflow环境(cpu)

2.1 有anaconda-navigator

打开anaconda-navigator→environment→Create,新建环境→命名tensorflow,选择python版本;

左键单击新建的环境右边的绿色小三角;

选择点击Open Terminal

在对话框中执行:ppip install -U tensorflow ==版本号 -i https://pypi.tuna.tsinghua.edu.cn/simple

(换成其他的源下载速度显著提升,出现Cannot unpack file报错时换源试试,还不行的话只能老老实实下载了,慢就慢点吧)

 清华大学 https://pypi.tuna.tsinghua.edu.cn/simple/ 
 中国科学技术大学 http://pypi.mirrors.ustc.edu.cn/simple/
 阿里云 http://mirrors.aliyun.com/pypi/simple/ 
 中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/ 
2.2 没有anaconda-navigator

cmd中执行:

conda create -n tensorflow python=3.6

上述代码即在anaconda-navigator 界面中,创建环境名为 TensorFlow,Python 版本为 3.6 的环境的等价操作。

后需要添加以下三个系统环境变量:

          

 2.3 使用tensorflow对应的python解释器

在VScode中选择,快捷键ctrl+shift+p,搜索“python select”,进行选择

3. 在Anaconda中配置Tensorflow环境(gpu)

3.1 创建虚拟环境并检查版本
3.1.1 创建虚拟环境

同2.1

3.1.2 查询版本

tensorflow官网上有

3.1.2 安装 CUDA

        CUDA是英伟达公司推出的一个运算平台,它拥有大量数据运算的能力,这里简单理解为CUDA是一个超级计算器就好,TensorFlow框架可以利用CUDA这个超级计算器来提升运算速度,缩短运行时间。

        cuda下载地址:CUDA Toolkit Archive | NVIDIA Developer

 下载之后双击运行,下列路径默认就好

 同意并继续。

自定义:

这里CUDA一定要勾选上,下面的可选可不选,对后续没有影响:

  • 在组件CUDA一栏中,取消勾选Visual Studio Integration(因为我们并没有使用Visual Stduio环境,即使勾选上了也会安装失败)

 在Driver components一栏比较Display Driver的新版本和当前版本的信息。

  • 若当前版本高于新版本,则取消勾选Display Driver;
  • 若当前版本低于新版本,则保留默认安装信息即可

 下面这个安装位置可以自己改。要截图记录一下你装到哪里了,后面要用到:

 后续一路默认安装即可。

下一步配置环境变量

如果换了安装路径的话大概率是要自己手动添加环境变量的

 检验是否安装成功

cmd运行:

nvcc --version

出现下述结果即为成功:

3.1.3 安装cudnn

        cuDNN是NVIDIA 公司推出的用于深度神经网络的GPU加速库(但还需要安装cuDNN神经网络加速库,有了它N卡才能在GPU上完成深度学习的计算。上文我们把CUDA看做超级计算器,这里我们把cuDNN看做超级计算器与数据平台连接的数据线。

        cudnn下载地址:cuDNN Archive | NVIDIA Developer

        这个要你自己注册英伟达账户才能下载

 安装后解压:

 接下来:

  • 要将cudnn文件中的对应文件夹下的所有文件复制 到对应的安装目录中,
  • 而 不是 把cudnn文件中的文件夹复制过去。eg:复制的不是cudnn中的bin文件夹,而是bin文件夹下的所有文件

举例:

3.2 安装tensorflow-gpu

上面3.1.1已经创建好环境了,我们检查一下,打开anaconda prompt,执行conda env list,看到有一个名为 tfgpu 的环境

 激活环境,conda activate tfgpu

 进入tfgpu环境后,到tfgpu安装路径下,

d:
cd D:\anaconda\anaconda3\envs\tfgpu

输入以下命令:

pip install tensorflow-gpu==2.6.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

无报错就安装好了。 

打开vscode或其他python环境,导入tensorflow包进行测试 ,查看tensorflow的版本信息

import tensorflow as tf
tf.__version__

4. 下载VS Code

4.1 下载过程

需要注意的是勾选:添加快捷方式到桌面、添加到path

官网地址下载特别慢,使用国内镜像下载

首先复制下载链接:在官网开始下载后,在浏览器下载任务列表中找到下载地址

例如:https://az764295.vo.msecnd.net/stable/d045a5eda657f4d7b676dedbfa7aab8207f8a075/VSCodeSetup-x64-1.72.2.exe

替换为国内镜像vscode.cdn.azure.cn

更改后的地址下载地址:http://vscode.cdn.azure.cn/stable/d045a5eda657f4d7b676dedbfa7aab8207f8a075/VSCodeSetup-x64-1.72.2.exe

注意:https需要替换为http

(原文链接:https://blog.csdn.net/weixin_40293364/article/details/127647766)

4.2 添加插件:

作为新手安装的插件,仅供参考

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值