1. Anaconda下载
1.1 去清华镜像站https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ 下载旧的版本,不要去官网下载新版本,可能会出现anaconda-navigator找不到的情况;
下载过程:
不勾选添加环境变量(Add Anaconda to my PATH environment variable),后需手动添加(否则cmd出现“conda”不是内部或者外部命令)。
不勾选Register Anaconda as my default Python
其余默认
添加环境变量:双击path
1是Python需要,2是conda自带脚本,3是jupyter notebook动态库,4不知道,5是使用C with python的时候
1.2 已经下载了官方版本,找不到anaconda-navigator:
①添加环境变量后,唤起cmd,执行conda install anaconda navigator
②可能在\Anaconda3\pkgs\anaconda-navigator-1.9.7-py37_0\Scripts这里
③不通过清爽的anaconda-navigator里配置tensorflow环境,直接在丑陋的(dbq)anaconda-prompt配置
④新找到的方法:
打开cmd,打开anaconda所在目录(例如我的:cd/dD:\anaconda\anaconda3),之后执行python .\Lib\_nsis.py mkmenus,就好了!!!!!!!!
1.3 配置国内镜像源
在命令后加清华镜像源:-i https://pypi.tuna.tsinghua.edu.cn/simple
在cmd或anaconda prompt中运行:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
//在下载时显示使用的源
conda config --set show_channel_urls yes
//换回conda的默认源
conda config --remove-key channels
检查是否配置完毕:
conda config --show channels
//或者
conda info
2. 在Anaconda中配置Tensorflow环境(cpu)
2.1 有anaconda-navigator
打开anaconda-navigator→environment→Create,新建环境→命名tensorflow,选择python版本;
左键单击新建的环境右边的绿色小三角;
选择点击Open Terminal
在对话框中执行:ppip install -U tensorflow ==版本号 -i https://pypi.tuna.tsinghua.edu.cn/simple
(换成其他的源下载速度显著提升,出现Cannot unpack file报错时换源试试,还不行的话只能老老实实下载了,慢就慢点吧)
清华大学 https://pypi.tuna.tsinghua.edu.cn/simple/
中国科学技术大学 http://pypi.mirrors.ustc.edu.cn/simple/
阿里云 http://mirrors.aliyun.com/pypi/simple/
中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/
2.2 没有anaconda-navigator
cmd中执行:
conda create -n tensorflow python=3.6
上述代码即在anaconda-navigator 界面中,创建环境名为 TensorFlow,Python 版本为 3.6 的环境的等价操作。
后需要添加以下三个系统环境变量:
2.3 使用tensorflow对应的python解释器
在VScode中选择,快捷键ctrl+shift+p,搜索“python select”,进行选择
3. 在Anaconda中配置Tensorflow环境(gpu)
3.1 创建虚拟环境并检查版本
3.1.1 创建虚拟环境
同2.1
3.1.2 查询版本
3.1.2 安装 CUDA
CUDA是英伟达公司推出的一个运算平台,它拥有大量数据运算的能力,这里简单理解为CUDA是一个超级计算器就好,TensorFlow框架可以利用CUDA这个超级计算器来提升运算速度,缩短运行时间。
cuda下载地址:CUDA Toolkit Archive | NVIDIA Developer
下载之后双击运行,下列路径默认就好
同意并继续。
自定义:
这里CUDA一定要勾选上,下面的可选可不选,对后续没有影响:
- 在组件CUDA一栏中,取消勾选Visual Studio Integration(因为我们并没有使用Visual Stduio环境,即使勾选上了也会安装失败)
在Driver components一栏比较Display Driver的新版本和当前版本的信息。
- 若当前版本高于新版本,则取消勾选Display Driver;
- 若当前版本低于新版本,则保留默认安装信息即可
下面这个安装位置可以自己改。要截图记录一下你装到哪里了,后面要用到:
后续一路默认安装即可。
下一步配置环境变量:
如果换了安装路径的话大概率是要自己手动添加环境变量的
检验是否安装成功
cmd运行:
nvcc --version
出现下述结果即为成功:
3.1.3 安装cudnn
cuDNN是NVIDIA 公司推出的用于深度神经网络的GPU加速库(但还需要安装cuDNN
神经网络加速库),有了它N卡才能在GPU上完成深度学习的计算。上文我们把CUDA看做超级计算器,这里我们把cuDNN看做超级计算器与数据平台连接的数据线。
cudnn下载地址:cuDNN Archive | NVIDIA Developer
这个要你自己注册英伟达账户才能下载
安装后解压:
接下来:
- 要将cudnn文件中的对应文件夹下的所有文件复制 到对应的安装目录中,
- 而 不是 把
cudnn
文件中的文件夹复制过去。eg:复制的不是cudnn
中的bin
文件夹,而是bin
文件夹下的所有文件。
举例:
3.2 安装tensorflow-gpu
上面3.1.1已经创建好环境了,我们检查一下,打开anaconda prompt,执行conda env list,看到有一个名为 tfgpu 的环境
激活环境,conda activate tfgpu
进入tfgpu环境后,到tfgpu安装路径下,
d:
cd D:\anaconda\anaconda3\envs\tfgpu
输入以下命令:
pip install tensorflow-gpu==2.6.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
无报错就安装好了。
打开vscode或其他python环境,导入tensorflow
包进行测试 ,查看tensorflow
的版本信息
import tensorflow as tf
tf.__version__
4. 下载VS Code
4.1 下载过程
需要注意的是勾选:添加快捷方式到桌面、添加到path
官网地址下载特别慢,使用国内镜像下载
首先复制下载链接:在官网开始下载后,在浏览器下载任务列表中找到下载地址
例如:https://az764295.vo.msecnd.net/stable/d045a5eda657f4d7b676dedbfa7aab8207f8a075/VSCodeSetup-x64-1.72.2.exe
替换为国内镜像vscode.cdn.azure.cn
更改后的地址下载地址:http://vscode.cdn.azure.cn/stable/d045a5eda657f4d7b676dedbfa7aab8207f8a075/VSCodeSetup-x64-1.72.2.exe
注意:https需要替换为http
(原文链接:https://blog.csdn.net/weixin_40293364/article/details/127647766)
4.2 添加插件:
作为新手安装的插件,仅供参考