排序(一)

冒泡排序 O(N^2)

每次将最大的数冒到最右边

    public static void bubbleSort(int[] arr) {
        if (arr == null || arr.length <= 0) {
            return;
        }
        for (int e = arr.length-1; e >= 1; --e) {
            for (int i=0; i < e; ++i) {
                if (arr[i] > arr[e]) {
                    swap(arr, i, e);
                }
            }
        }
    }

    public static void swap(int[] arr, int i, int j) {
        arr[i] = arr[i] ^ arr[j];
        arr[j] = arr[i] ^ arr[j];
        arr[i] = arr[i] ^ arr[j];
    }
选择排序 O(N^2)

每次选择区间最小位置与目标位置交换

public static void selectionSort(int[] arr) {
        for (int i=0; i<arr.length-1; ++i) {
            int minIndex = i;
            for(int j=i+1; j<arr.length; ++j) {
                minIndex = arr[j] < arr[minIndex] ? j : minIndex;
            }
            swap(arr, i, minIndex);
        }
    }

    public static void swap(int[] arr, int i, int j) {
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }
插入排序 O(N^2)

依次向左比较,看最终能插入到哪个位置

public static void insertionSort(int[] arr) {
        for (int i=1; i<arr.length; ++i) {
            for (int j=i-1; j>=0 && arr[j]>arr[j+1]; --j) {
                    swap(arr, j, j+1);
            }
        }
    }

    public static void swap(int[] arr, int i, int j) {
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }
归并排序 O(N*log(N))

分治

public static void mergeSort(int[] arr) {
        mergeSort(arr,0, arr.length-1);
    }

    public static void mergeSort(int[] arr, int l, int r) {
        if (l == r) {
            return ;
        }
        int mid = l + ((r - l) >> 1);
        mergeSort(arr, l, mid);
        mergeSort(arr, mid+1, r);
        merge(arr, l, mid, r);
    }

    public static void merge(int[] arr, int l, int mid, int r) {
        int[] help = new int[r-l+1];
        int p1 = l;
        int p2 = mid+1;
        int i = 0;
        while(p1 <= mid && p2 <= r) {
            help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
        }
        while(p1 <= mid) {
            help[i++] = arr[p1++];
        }
        while(p2 <= r) {
            help[i++] = arr[p2++];
        }
        for (i=0; i < help.length; ++i) {
            arr[l+i] = help[i];
        }
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值