1001 害死人不偿命的(3n+1)猜想

1001 害死人不偿命的(3n+1)猜想 (15 分)

卡拉兹(Callatz)猜想:

对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?

输入格式:

每个测试输入包含 1 个测试用例,即给出正整数 n 的值。

输出格式:

输出从 n 计算到 1 需要的步数。

输入样例:

3

输出样例: 

5

作者想法:

本题题目通俗易懂,输入一个数,输出这个数从n到1所需步数,就通过一个循环,再依据题目所给的条件设定一个分支语句,该分支语句只需分为奇数和偶数两种。

注意点:1.循环终止条件为 n==1, 所以可以使用while语句,while(n!=1)  或者do...while语句  do{  ...  }while(n ==1);  (别忘了分号)。

               2.定步数的时候记得初始化为0,所以为 int count = 0; 

               3.分支语句对n进行运算以及加了步数之后,应继续下一次循环,所以为continue,而不是break。

代码:

#include<stdio.h>
int main(){
    int n;
    int count = 0;
    scanf("%d",&n);
    while(n != 1){
        if(n %2 == 0){
            count++;
            n = n/2;
            continue;
        }
        else {
            count ++;
            n = (3*n+1)/2;
            continue;
        }
    }
    printf("%d",count);
    return 0;

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页