1001 害死人不偿命的(3n+1)猜想 (15 分)
卡拉兹(Callatz)猜想:
对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?
输入格式:
每个测试输入包含 1 个测试用例,即给出正整数 n 的值。
输出格式:
输出从 n 计算到 1 需要的步数。
输入样例:
3
输出样例:
5
作者想法:
本题题目通俗易懂,输入一个数,输出这个数从n到1所需步数,就通过一个循环,再依据题目所给的条件设定一个分支语句,该分支语句只需分为奇数和偶数两种。
注意点:1.循环终止条件为 n==1, 所以可以使用while语句,while(n!=1) 或者do...while语句 do{ ... }while(n ==1); (别忘了分号)。
2.定步数的时候记得初始化为0,所以为 int count = 0;
3.分支语句对n进行运算以及加了步数之后,应继续下一次循环,所以为continue,而不是break。
代码:
#include<stdio.h>
int main(){
int n;
int count = 0;
scanf("%d",&n);
while(n != 1){
if(n %2 == 0){
count++;
n = n/2;
continue;
}
else {
count ++;
n = (3*n+1)/2;
continue;
}
}
printf("%d",count);
return 0;
}