- 博客(175)
- 资源 (4)
- 收藏
- 关注
原创 关于XGBoost常问的一些问题的总结
l Xgboost和GBDT有什么异同? 传统GBDT以CART作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。 传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。顺便提一下,xgboost工具支持自定义代价函数,只要函数可...
2019-09-06 11:31:41
1517
原创 ROC-AUC的编程实现
之前笔试的时候看到的问题,通常我们都知道AUC是ROC去下面覆盖的面积,计算的方式也是计算每个小梯形的面积然后叠加出来的。后来我查阅了一下,发现了两个更为简单的方法,所以在此记录一下:AUC的物理意义是任取一个正例和任取一个负例,正例排序在负例之前的概率。方法1:其中M是正样本的个数, N是负样本的个数。方法2:对于相同的prob,取一半。 具体操作...
2019-09-06 11:28:00
897
原创 tf.data.Dataset与tfrecord学习笔记
目录1.tf.data.Dataset2.tfrecord2.1 使用tfrecord的原因2.2 tfrecord的写入2.3 tfrecord的读取3.两种方式的区别参考资料:1.tf.data.Dataset# 从tensor中获取数据dataset = tf.data.Dataset.from_tensor_slices(img_paths)...
2019-09-06 11:19:51
3661
原创 并查集及其典型应用
文章目录1. 图的连通性问题2. 并查集的原理简析2.1 初始化集合S2.2 Union(并)2.3 Find(查)2.4 通过读入直接相连的点对来更新S,并统计每个联通块的节点数目3. Python实现参考资料1. 图的连通性问题 (1)在地图上有若干城镇(点),已知所有有道路直接相连的城镇对。要解决整幅图的连通性问题。 (2)随意给你两个点,让你判断它们是否连通;或者问你整幅图一共有...
2019-08-26 17:01:14
1287
原创 最大公约数与最小公倍数的求法[Python]
最大公约数与最小公倍数的求法:1. 对输入的两个数判断大小,保证:a > b2. 进行循环,直到b = 0: temp = b b = a % b a = temp # 另一种表达方式为: a, b = b, a % b3. 最后返回b就是最大公约数最小公倍数就是两者的乘积除以最大公倍数Python代码实现 def func(num1, ...
2019-08-26 11:17:18
634
原创 京东2020校招笔试题-合唱队分组
合唱队的N名学生站成一排依次编号为1-N,先要求在编号连续的前提下,将学生按照身高进行分组,要求每组的最矮的同学要比上一组最高的同学要高或者相等。问最大可以分成几组。输入:第一行: 人数第二行: 每个人的身高输出:最大的分组数如:输入:42 1 3 2输出:2解释:[2,1,3,2]->[[2,1], [3,2]]解题思路: 遍历数组,记录当前区间的最大值与最...
2019-08-24 21:58:30
733
原创 10种排序算法总结(Python 版)
文章目录1. 冒泡排序($O(n^2)$)2. 快速排序($O(nlogn)$)3. 简单插入排序($O(n^2)$)4. 希尔排序($O(n\log n)$)5. 简单选择排序($O(n^2)$)6. 堆排序[$O(n\log n)$]7. 归并排序($O(n\log n)$)8. 计数排序($O(n+k)$)9. 桶排序($O(n+k)$)10. 基数排序($O(n*k)$)1. 冒泡...
2019-07-05 17:22:46
899
原创 长短期记忆网络(LSTM)学习笔记
文章目录0 前言1 LSTM与RNN的异同2 LSTM结构细节2.1 细胞状态2.2 遗忘门2.3 输入门2.4 输出门3 总结4 LSTM的变体4.1 Adding “Peephole Connections”4.2 耦合遗忘门和输入门4.3 GRU(Gated Recurrent Unit)参考资料0 前言 循环神经网络工作的关键点就是使用历史信息来帮助当前的决策,但同时也带来更大的技术...
2019-07-04 23:14:58
13619
8
原创 循环神经网络(RNN)学习笔记
文章目录0 前言1 RNN结构2 手动实现一个RNN3 RNN的推导参考资料0 前言 循环神经网络(Recurrent Neural Network, RNN)的主要用途是处理和预测序列数据。无论是全连接神经网络还是卷积神经网络,其网络结构都是从输入层到隐藏层再到输出层,层与层之间是全连接或者部分连接,层之间的节点是无连接的。而循环神经网络隐藏层之间的结点是有连接的,隐藏层的输入不仅包括输入...
2019-07-03 23:29:34
3511
2
原创 华为20190525研发笔试
1. 判断两个ip是是否为同一网段【题目描述】:输入两个ip地址和一个子网掩码,判断这两个ip地址是否属于同一网段(ip地址与子网掩码按位与,结果相同)。要求输出是否同一个网段(0否, 1是)和第一个ip与子网掩码按位与的结果【输入描述】:ip1 ip2 子网掩码(按空格隔开)【输出描述】:0或者1 第一个ip与子网掩码按位与的结果(用空格隔开)【测试用例】:【输入】:...
2019-05-31 22:33:26
1473
原创 从零开始-Machine Learning学习笔记(39)-Softmax回归
文章目录1. Logistic Regression(逻辑回归)2. Softmax回归1. Logistic Regression(逻辑回归) 在逻辑回归中,我们使用Sigmoid函数求取预测的概率:hθ(x(i))=11+e−θTx(i)h_{\theta}(x^{(i)}) = \frac{1}{1+e^{-{\theta^{T}x^{(i)}}}}hθ(x(i))=1+e−θ...
2019-05-08 16:59:08
391
原创 经典论文阅读(4)-InceptionV2
经典论文阅读(4)-InceptionV2及TensorFlow实现文章目录经典论文阅读(4)-InceptionV2及TensorFlow实现0. 前言1. 使用mini-batch进行批量标准化2. mini-BatchNormalization的好处3. 训练BN和使用BN进行推理(inference)4. 文章中的另一改进-将Inception模块中的5X5卷积用两层3X3卷积来代替5....
2019-05-03 17:59:47
2676
原创 华为20190410研发笔试第二题:字符串展开
【题目描述】给定一个字符串,字符串可以包含数字、大小写字母及括号(包括大括号、中括号和小括号)。括号可以嵌套,即括号中可以出现数字和括号。按照下列的规则对字符串进行展开,不用考虑括号成对不匹配的问题,用例保证括号匹配,同时保证每个数字后面都有括号,不用考虑数字后面没有括号的情况:即2a2(b)。数字表示括号内字符串重复的次数,展开后的字符串不包含括号;将字符串逆序展开。输出最终的...
2019-04-11 09:40:47
1695
原创 华为20190410研发笔试第三题:求两点之间的路径数
【题目描述】 在一张NXM的地图上,每个点的海拔高度不同,从当前点只能访问上下左右四个点中还没有到达过的点,且下一步的选择的点的海拔高度必须高于当前的点;求从地图中的点A到点B的总的路径数量除以10910^9109的余数。地图左上角坐标为(0,0),右下角的坐标为(N-1, M-1)。【输入描述】第一行输入两个整数N, M(0<N≤600,0<M≤6000&a...
2019-04-11 09:04:47
1225
原创 经典论文阅读(3)-GoogLeNet-InceptionV1及其tensorflow实现
文章目录0. 前言1. Motivation2. Inception结构3. GoogLeNet-InceptionV14. InceptionV1的tensorflow实现参考资料0. 前言 GoogLeNet是Google开发的一个卷积神经网络模型,获得了ILSVRC2014的冠军。GoogLeNet增加了模型的宽度和深度,它的深度有22层,但是参数却之后500万个,AlexNet是它的...
2019-04-02 17:29:51
1409
原创 经典论文阅读(2)-VGGNet
经典论文阅读(2)-VGGNet文章目录经典论文阅读(2)-VGGNet0. 前言1. VGGNet与AlexNet2. 关于文章对收敛快的解释3. 关于使用3*3的卷积核4. 关于模型训练5. VGGNet的实现参考资料0. 前言 VGGNet是牛津大学Visual Geometry Group和Deep Mind共同开发的一种深度卷积网络。他们探索了卷积神经网络深度与其性能之间的关系。...
2019-03-25 22:43:58
919
原创 经典论文阅读(1)-AlexNet
0. 前言 AlexNet是深度学习领军任务Geoffrey Hinton教授的学生Alex Krizhevsky提出来的。AlexNet在ILSVRC 2012竞赛中以压倒性的成绩获得了冠军。AlexNet是一个具有突破性意义的模型,在他之前,神经网络和深度学习都陷入了长时间的瓶颈期。AlexNet一经问世就统治了整个图像识别领域。直至今日,AlexNet也依然是效果出色且具有启发意义的网络...
2019-03-22 15:26:51
2810
原创 从零开始-Machine Learning学习笔记(38)-基于SVD的推荐系统
文章目录0. 前言1. 关于SVD与特征值分解2. 基于SVD的推荐系统2. 1 相似度2.2 使用SVD对未打分的物品进行打分2.3 基于SVD的推荐函数3. 基于SVD的图像压缩4. SVD的评价参考资料0. 前言 本文总结于Peter Harrington的《Machine Learning in Action》的第14章-利用SVD简化数据。1. 关于SVD与特征值分解 SVD...
2019-03-17 16:43:58
655
原创 腾讯2019年暑期实习生招聘提前批在线笔试技术研究和数据分析方向
前段时间参加了腾讯2019年暑期实习生招聘提前批技术研究和数据分析方向的笔试,上来就直接是5道编程题,当时做出来三道半,且还没有完全通过测试用例。 所以下来之后又详细的研究了一番。发现其实题没有想象中的那么难,只不过在当时紧张的情况下,思维受到了一些限制。这个仓库存放了我关于这5道题的解法。代码我放在我的github上了,有兴趣的同学可以Clone到本地。如果有什么问题,欢迎交流:kab...
2019-03-13 21:20:12
4924
10
转载 从零开始-Machine Learning学习笔记(37)-L1正则化优化方法PGD(近端梯度下降)
【本文转载自LASSO回归与L1正则化 西瓜书,感谢BIT_666同学】 1.结构风险与经验风险在支持向量机部分,我们接触到松弛变量,正则化因子以及最优化函数,在朴素贝叶斯分类,决策树我们也遇到类似的函数优化问题。其实这就是结构风险和经验风险两种模型选择策略,经验风险负责最小化误差,使得模型尽可能的拟合数据,而结构风险则负责规则化参数,使得参数的形式尽量简洁,从而...
2019-03-13 15:54:54
3357
1
原创 从零开始-Machine Learning学习笔记(36)-EM算法总结
文章目录0. 前言1. EM算法流程2. EM算法的经典例子-三硬币模型3. 参考资料0. 前言 EM(Expectation Maximization)算法是1977由Dempster等人提出来的,是一种迭代算法。其每次迭代过程分为两步:E步:求期望(Expectation);M步:求极大值(Maximization)。 EM算法的应用场景: 当模型含有隐变量或者潜在变量(latent...
2019-03-07 11:29:16
592
3
原创 从零开始-Machine Learning学习笔记(35)-最大熵模型
文章目录0. 前言1. 最大熵模型的定义2. 求解最优化问题3. 改进的迭代尺度法(Improved Iterative Scaling, IIS)4. 最大熵模型的总结5. 参考资料0. 前言 假设离散随机变量X的概率分布是P(x),其熵为:H(P)=−∑xP(x)logP(x)H(P) = -\sum_{x} P(x)\log P(x)H(P)=−x∑P(x)logP(x)熵...
2019-03-06 11:07:34
947
原创 从零开始-Machine Learning学习笔记(34)-XGBoost原理详解
文章目录0. 写在前面1. XGBoost简介2. XGBoost原理介绍2.1 推导最优值函数(打分函数)2.2 损失增益2.3 XGBoost的完整流程3. 后记参考资料0. 写在前面 最近刚看完AdaBoost和GBDT部分,就想着一鼓作气将XGBoost的内容了解一下。在写这篇博文的时候,在网上也查找了大量的文章,但是看得还是云里雾里的。在看完了作者的Slide讲解后,思路就比较清晰...
2019-03-04 22:07:09
728
原创 从零开始-Machine Learning学习笔记(33)-AdaBoost、Boosting tree、GBDT
从零开始-Machine Learning学习笔记(33)-AdaBoost、Boosting tree、GBDT1. AdaBoost 在周志华先生的《机器学习》的集成学习(第8章)一章中,给出了Adaboost算法的伪代码,这里对继续对这个算法进行详细的解释。 AdaBoost的基本原理就是训练N个弱学习器,将这N个弱学习器进行加权结合:【上面的算法可以总结为】:初始化样...
2019-03-04 11:23:47
475
原创 Python学习笔记之TCP与UDP编程
文章目录1. TCP-(Transmission Control Protocol)1.1 TCP客户端1.2 TCP服务端2. UDP(User Datagram Protocol)2.1 UDP客户端2.2 UDP服务端1. TCP-(Transmission Control Protocol)1.1 TCP客户端以下是一个标准的TCP客户端建立流程:# 导入socket库:impo...
2019-02-25 11:38:17
375
原创 Python学习笔记之正则表达式
文章目录1. 基础语法2. re模块2.1 判断正则表达式是否匹配-re.match()2.2 切分字符串-re.split()2.3 分组2.4 解决贪婪陪匹配2.5 预编译正则表达式-re.compile()1. 基础语法\d:可以匹配一个数字\w:可以匹配一个字母或者数字.:可以匹配任意字符\s:可以匹配一个空格\_, \-, \', \":特殊字符需要使用转义符匹配变长的字符...
2019-02-24 23:22:45
208
原创 Python学习笔记之进程与线程
文章目录1. 多进程2. 批量创建进程-Pool3. 进程间通信4. 多线程5. 多线程数据安全修改-Lock6. python中无法做到多线程并发的原因-GIL7. ThreadLocal8. 进程与线程的优缺点总结1. 多进程multiprocessing模块就是跨平台版本的多进程模块。multiprocessing模块提供了一个Process类来代表一个进程对象,下面的例子演示了启动一...
2019-02-24 22:36:29
244
原创 Python学习笔记之__slot__、@property、__str__、__iter__、__getitem、__getattr__、和__call__
文章目录1. \_\_slots\_\_2. @property3. \_\_str\_\_4. \_\_iter\_\_5. \_\_getitem\_\_6. \_\_getattr\_\_7. \_\_call\_\_【注意】出现的__slot__和__init__和__sstr__等,都是双下划线1. __slots__Python允许在定义class的时候,定义一个特殊的__slo...
2019-02-24 22:36:07
549
原创 Python学习笔记之枚举类和调试工具
文章目录1. 枚举类2. 用于调试的工具们-print(), assert, logging和pdb2.1 assert(断言)2.2 logging2.3 pdb1. 枚举类from enum import EnumMonth = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', '...
2019-02-24 22:35:35
257
原创 Python学习笔记之map()、reduce()、filter()和sorted()函数学习
文章目录1. map()2. reduce()3. filter()4.sorted()1. map()map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。def f(x): return x*xr = map(f, [1, 2, 3, 4, 5])print(list(r))[1...
2019-02-23 22:52:38
386
原创 Python学习笔记之生成器与迭代器
文章目录1. 生成器1. 创建生成器方法1-[]->()1.2 创建生成器的方法2-关键字`yield`1.3 生成器例子-杨辉三角2. 迭代器学习于廖雪峰的官方网站1. 生成器在Python中,这种一边循环一边计算的机制,称为生成器:generator。创建生成器的方法有两种:将列表生成式的[]改为()使用关键字yield1. 创建生成器方法1-[]->()...
2019-02-23 22:51:36
206
原创 Python学习笔记之递归函数
文章目录1. 递归基础2. 递归的优化-尾递归3. 递归函数的应用-汉诺塔参考了廖雪峰老师的python教程:廖雪峰的官方网站1. 递归基础递归函数是在函数内部调用自己,比如我们求一个数的阶乘,就可以使用递归函数:def func(n): if n == 1: return 1 return n * func(n-1)print(func(100))...
2019-02-21 23:27:42
343
原创 Python画图-主次坐标轴和翻转坐标轴
文章目录1. 主次坐标轴2. 翻转坐标轴 很多时候我们在进可视化的时候希望把两个不同量纲的数据绘在一张图中。比如我们希望在一张图中画出历年房子的成交量和价格变化趋势图,或者是降雨与水位的变化趋势图等。这些量纲不一样就需要用到主次坐标轴来实现。1. 主次坐标轴import matplotlib.pyplot as pltfrom pylab import mplmpl.rcParams[...
2019-01-22 11:18:04
30844
3
原创 TensorFlow学习笔记(3)-TensorBoard学习笔记
文章目录1. 命名空间2. 如何开启TensorBoard3. 一个简单的神经网络应用TensorBoard4. 其他summary函数参考资料 Tensorflow提供了一个可视化工具TensorBoard。TensorBoard可以有效的展示TensorFlow在运行过程中的计算图、各种指标随时间的变化趋势以及训练中使用到的图像等信息。1. 命名空间 在TensorFlow的默认视图...
2019-01-21 17:18:02
520
原创 TensorFlow学习笔记(2)-构建神经网络及其可视化
文章目录1. 添加隐藏层2. 生成实验数据3. 定义网络结构4. 可视化4.1 loss曲线4.2 显示当前训练曲线参考资料 tensorflow给我的感觉就是定义了一系列的计算方法和流程,但是网络的构建还是需要自己去定义的。比如隐藏层的个数,隐藏层的神经元的数量等等。所以,首先定义一个添加隐藏层的函数。1. 添加隐藏层import tensorflow as tfdef add_la...
2019-01-16 10:49:55
959
1
原创 TensorFlow学习笔记(1)-基础笔记
文章目录1. 计算图的概念2. 常量与变量3. 交互式使用4. Fetch & Feed参考资料:1. 计算图的概念 TensorFlow 程序通常被组织成一个构建阶段和一个执行阶段。 在构建阶段, op 的执行步骤 被描述成一个图。在执行阶段, 使用会话执行执行图中的 op。 TensorFlow的名字中已经说明了它最为重要的两个特点:Tensor和Flow。其中Tensor意...
2019-01-09 11:40:06
1134
1
原创 《Machine Learning In Action》学习笔记(1)-KNN(k-近邻算法)
knn算法我在之前的博客从零开始-Machine Learning学习笔记(20)-kNN(k-Nearset Neignbor)学习笔记中也已经提到了,大家如果感兴趣可以回过头去看看,knn原理非常简单。不需要训练,当有待分类样本时,只需要从数据集中选取k个与这个样本距离最近的样本,将k个样本中最多的label作为该待分类样本的label。 我将书中所给的代码使用Python3编译,添加...
2018-12-19 23:11:36
294
原创 Matplotlib中的fill_between总结
Matplotlib中的fill_between()函数总结 最近在处理数据的时候,需要从数据集合中选出数据来作为训练集,不同的筛选规则得到的数据块的分布一样,所以就想查看一下选取了那些数据块,比如将选中的数据换一种颜色来表示,但是数据如果比较多的话,就不太能看的出来了,所以如果将选中的数据块以柱状的形式框出来就好了,这个时候我看到了fill_between()函数,但是网上关于这个函数的博客...
2018-12-12 21:18:23
62647
20
原创 从零开始-Machine Learning学习笔记(32)-强化学习
文章目录1. K-摇臂赌博机1.1 探索与利用1.2 $\epsilon$-贪心1.3 Softmax2. 有模型学习2.1 策略评估2.2 策略改进2.3 策略迭代与值迭代3. 免模型学习3.1 蒙特卡罗强化学习3.2 时序查分学习4. 值函数近似5. 模仿学习5.1 直接模仿学习5.2 逆强化学习 下图是强化学习的一个简单的示意图。强化学习任务通常用马尔可夫决策过程(Markov Dec...
2018-11-30 23:37:37
1039
原创 从零开始-Machine Learning学习笔记(31)-规则学习
文章目录1. 基本概念2. 序贯覆盖3. 剪枝优化3.1 预剪枝-CN2算法3.2 后剪枝-RIPPER算法4. 一阶规则学习5. 归纳逻辑程序设计(ILP)5.1 最小一般泛化5.2 逆归结1. 基本概念 “规则学习” (rule learning)是从训练数据中学习出一组能用于对未见示例进行判别的规则。 形式上一般为:式子中,右边的部分称为规则体(Body),表示该条规则的前...
2018-11-28 23:10:04
4878
2
2014年研究生数学建模竞赛E题乘用车物流运输计划解题代码
2023-10-14
ADXL345文档资源集合
2016-03-06
android开发-2048游戏源代码
2017-12-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人