Cykaede
码龄3年
  • 56,874
    被访问
  • 9
    原创
  • 219,618
    排名
  • 9
    粉丝
  • 0
    铁粉
关注
提问 私信
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:日本
  • 加入CSDN时间: 2020-01-17
博客简介:

kaede0v0的博客

查看详细资料
  • 2
    领奖
    总分 133 当月 5
个人成就
  • 获得49次点赞
  • 内容获得31次评论
  • 获得103次收藏
创作历程
  • 10篇
    2021年
成就勋章
TA的专栏
  • 统计学
    4篇
  • 桥梁工程
    1篇
  • MATLAB
    2篇
  • Python(Abaqus)
    4篇
兴趣领域 设置
  • 人工智能
    深度学习神经网络tensorflow
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

解决Elsevier cas-dc Class, 在双栏情况下并排图片出现的标题错位问题

在Elsevier 新出的cas-dc 的双栏模板中,如果插入并排图片会出现标题错位的情况,如下图:之前想修复,参考了以下回答也没用。Placing three figures side by side, each with its own caption\begin{figure*} \begin{minipage}[t]{0.48\linewidth} \includegraphics[width=\linewidth]{figs/Fig1.pdf} \ca
原创
发布博客 2021.12.08 ·
751 阅读 ·
2 点赞 ·
2 评论

如何使用Nvidia显卡对abaqus进行加速

本文介绍了如何使用 Nvidia CUDA1的加速功能,使Abaqus计算加速。原文驱动都设置完成可直接查看查看 环境变量设置安装显卡提前查询好主板是否与显卡兼容,在购买显卡。本次使用的是Nvidia 2021 新推出的 RTX A4000显卡2。GPU特性RTX A000GPU显存带纠错码ECC DDR6 16GB显存带宽448GB/s图形总线PCI-E X16CUDA核心数6144单精度浮点计算19.2 TFLOPS*具体可参考
原创
发布博客 2021.11.22 ·
3408 阅读 ·
1 点赞 ·
6 评论

通过python一键处理材料試験数据

文章目录材料試験数据处理導入屈服强度的计算通过最小二乘法计算弹性模量E出图Full CodeMatlab ver.材料試験数据处理My_blog,在这里可以看见jupyter源代码钢材的材料试验自动数据处理python脚本可以实现大量数据的一键处理,算出自动算出材料试验的屈服强度,最大强度,弹性模量,泊松比,最后自动出图,并输出结果在excel表李 Google colab ソースコードsource_code導入最开始从csv的初始数据里,读取必要的数据然后根据截面积算出
原创
发布博客 2021.08.25 ·
129 阅读 ·
0 点赞 ·
0 评论

Importing the numpy c-extensions failed 解决方案

通过官网命令安装完pytorch,进行测试时出现如题报错Error message:IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!Importing the numpy c-extensions failed. - Try uninstalling and reinstalling numpy. - If you have already done that, then: 1. Check that you e
转载
发布博客 2021.04.09 ·
9338 阅读 ·
19 点赞 ·
14 评论

标准偏差:评价数据的离散程度

我们知道了方差是用来评价一组数据的离散程度,然而他与原数据 不处在同一个级数下,往往很难理解数据的离散程度,这个时候就需要引入 标准偏差 和变异系数,让这个指标 归一化,能更简单的去评价数据的离散程度。标准偏差(Standard Deviation)定义标准差(又称标准偏差、均方差,英语:Standard Deviation,缩写SD),为方差开算术平方根,反映组内个体间的离散程度。1标准偏差2标准偏差^2标准偏差2 = 方差方差:σ2=1n∑i=1n(xi−xˉ)2 .方差: \sigma
原创
发布博客 2021.02.23 ·
5975 阅读 ·
0 点赞 ·
0 评论

通过MATLAB 调用大量csv里的数据

Matlab 调用文件夹内的excel文件当利用Matlab做数据分析的时候,经常会出现想调用N个excel文件里的信息,这个时候就可以利用 [csvread] 一次性读取多个excel里面的内容并全部保存到一个wrokwpace里面*2019年之后的Matlab推荐使用 readmatrix,两者都行。只想看结果可以直接跳转完整代码 Matlab 调用文件夹内的excel文件思路完整代码小结参考思路利用 [ls]db=ls读取文件夹内所有文件名的字符信息。可以得到db的值如下:
原创
发布博客 2021.02.16 ·
1296 阅读 ·
1 点赞 ·
1 评论

基于python对abaqus解析的监视,并自动中断任务

运用paython
原创
发布博客 2021.02.15 ·
1423 阅读 ·
2 点赞 ·
0 评论

如何理解95%置信区间

科技论文里经常会出现【95%CI】的评价,这个评价到底有什么意义,他和[68-95-99.7法则](https://blog.csdn.net/kaede0v0/article/details/113790060)的关系是什么,可能很多人没有清楚的理解,包括之前写论文评价95%CI的自己。
原创
发布博客 2021.02.11 ·
15380 阅读 ·
13 点赞 ·
5 评论

Fatigue Life of Riveted Steel Bridges.pdf

发布资源 2021.02.11 ·
pdf

简单理解正态分布(概率密度函数)和68-95-99.7法则

正太分布和概率密度函数,期望值,方差正态分布(Normal distribution),又名高斯分布(Gaussian distribution)是一个非常常见的连续概率分布。正态分布在统计学上十分重要,经常用在自然和社会科学来代表一个不明的随机变量1。正态分布的形状由平均值 μ\muμ和方差σ2\sigma^2σ2所决定。一个 服从 随机变量XXX的正态分布可以写成X~Normal(μ,σ2);orX~N(μ,σ2) X~Normal(\mu, \sigma^2); or X~N(\mu, \
原创
发布博客 2021.02.11 ·
17405 阅读 ·
11 点赞 ·
3 评论

方差的简单理解

这里写自123定义目录标题欢迎使用Markdown编辑器2312新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器2312你好! 这是你第一次使123123用 Markdown编辑器 所展示的
原创
发布博客 2021.02.23 ·
1378 阅读 ·
0 点赞 ·
0 评论