笔记
ERCO123
这个作者很懒,什么都没留下…
展开
-
matplotlib.pyplot的使用总结大全(入门加进阶)
matplotlib.pyplot的使用总结大全(入门加进阶) - 知乎原创 2021-11-10 21:27:21 · 335 阅读 · 0 评论 -
LSTM老外很棒的博客
LSTMhttps://colah.github.io/posts/2015-08-Understanding-LSTMs/原创 2021-11-06 19:38:17 · 188 阅读 · 0 评论 -
kaggle比赛里面的融合多个模型和选取的时候选择相关性差的模型提升大的理论背景
机器学习比赛大杀器 ---- 模型融合 (stacking & blending) - AIQ原创 2021-10-23 10:03:41 · 243 阅读 · 0 评论 -
SciPy中的经典优化算法
SciPy中的经典优化算法 | msgsxj'blog原创 2021-10-22 21:05:58 · 788 阅读 · 0 评论 -
图解设计模式
参考常用设计模式有哪些?原创 2021-09-27 09:14:08 · 144 阅读 · 0 评论 -
窗口函数: 排序篇
思路6:窗口函数实际上,在mysql8.0中有相关的内置函数,而且考虑了各种排名问题:row_number(): 同薪不同名,相当于行号,例如3000、2000、2000、1000排名后为1、2、3、4rank(): 同薪同名,有跳级,例如3000、2000、2000、1000排名后为1、2、2、4dense_rank(): 同薪同名,无跳级,例如3000、2000、2000、1000排名后为1、2、2、3ntile(): 分桶排名,即首先按桶的个数分出第一二三桶,然后各桶内从1排名,实际不是很原创 2021-08-29 15:41:41 · 246 阅读 · 0 评论 -
【学习笔记】LightGBM Tuner: New Optuna Integration for Hyperparameter Optimization用optuna调参LightGBM
参考原创 2021-06-05 10:54:50 · 504 阅读 · 0 评论 -
【学习笔记】导入数据减少内存的办法
def reduce_mem_usage(df): """ iterate through all the columns of a dataframe and modify the data type to reduce memory usage. """ start_mem = df.memory_usage().sum() / 1024**2 print('Memory usage of dataframe is {:.2f} MB'.format(st原创 2021-06-04 11:01:48 · 173 阅读 · 2 评论 -
MAPE的实现方式
import numpy as npdef masked_mape_np(y_true, y_pred, null_val=np.nan): with np.errstate(divide='ignore', invalid='ignore'): if np.isnan(null_val): mask = ~np.isnan(y_true) else: mask = np.not_equal(y_true, nu.原创 2021-05-04 16:32:02 · 1067 阅读 · 0 评论 -
提高国内访问 GitHub 的速度的 9 种方案
参考原创 2021-03-17 12:04:26 · 234 阅读 · 0 评论 -
ubuntu如何实现双屏显示
参考原创 2021-03-14 11:46:02 · 654 阅读 · 0 评论 -
[Docker镜像] 关于阿里云容器镜像服务的使用(以天池比赛提交镜像为例)
参考艾兄的文章写的很好原创 2021-03-14 10:38:09 · 185 阅读 · 0 评论 -
Embedding、Attention、Transformer好看易懂的国外博客
EmdeddingAttentionTransformer原创 2021-02-27 18:57:31 · 821 阅读 · 0 评论 -
自己动手实现一个K-Means算法
import matplotlib.pyplot as pltimport randomimport numpy as npimport math# 随机生成的点random_x = [random.randint(-100, 100) for _ in range(50)]random_y = [random.randint(-100, 100) for _ in range(50)]random_points= [(x, y) for x, y in zip(random_x, rand原创 2021-02-27 15:34:10 · 431 阅读 · 1 评论 -
Python里面的any()、all()函数
参考原创 2021-02-27 15:18:58 · 130 阅读 · 0 评论 -
tensorflow机器学习模型的跨平台上线
tensorflow模型的跨平台上线的备选方案一般有三种:(1)即PMML方式,(2)tensorflow serving方式,(3)跨语言API方式。参考原创 2021-02-27 10:33:15 · 195 阅读 · 0 评论 -
functools.cmp_to_key(func)
参考原创 2021-02-26 11:27:01 · 171 阅读 · 0 评论 -
【学习笔记】经典排序算法
10大经典排序算法动画演示参考1参考2划重点,重点看时间复杂度为nlogn的三个比较排序算法,堆排序、快速排序、归并排序。对于复杂度为n*2的算法和计数排序、桶排序、基数排序的内容以了解为主。这里需要找一个快速排序的代码放到这里去这里需要准备归并排序的代码这里需要找下堆排序的代码...原创 2021-02-22 15:59:00 · 139 阅读 · 2 评论 -
【学习笔记】字符串算法
Python里面的string是不可变的,进行比如字符串拼接等操作实际上是新生成了一个对象,immutable的好处是线程安全的,如果不是immutable,那么在多线程的时候可能会有一些问题原创 2021-02-22 15:58:42 · 70 阅读 · 0 评论 -
KM(Kuhn-Munkres)算法
参考带权二分图最佳完美匹配,O(n^3),(运用匈牙利算法辅助求解),同时也是完备匹配原创 2021-02-20 19:36:09 · 482 阅读 · 0 评论 -
时序差分学习(Temporal-Difference Learning)
参考原创 2021-02-20 18:52:25 · 139 阅读 · 0 评论 -
Python isalnum()、isdigit()、isalpha()方法
参考原创 2021-02-20 10:29:54 · 156 阅读 · 0 评论 -
【Python基础】max/min函数的高级用法
参考原创 2021-02-18 11:01:31 · 221 阅读 · 0 评论 -
【学习笔记】位运算
划重点位运算判断奇偶要比取模运算来的快,之后尽量使用位运算来进行此类运算原创 2021-02-08 23:40:44 · 133 阅读 · 0 评论 -
【学习笔记】高级树、AVL树和红黑树---了解为什么出现,设计思路即可,不要求写代码出来
完全平衡二叉树–>AVL树近似平衡二叉树—> 红黑树面试前需要记住的知识点原创 2021-02-08 23:14:39 · 113 阅读 · 0 评论 -
【学习笔记】启发式搜索A*算法
回顾:原创 2021-02-08 22:40:49 · 109 阅读 · 0 评论 -
python里面的文件模块os.path和pathlib.Path
import os print(os.path.abspath('.')) # 获取相对路径的绝对路径print(os.path.abspath('..')) # 获取当前路径的上级目录的绝对路径print(os.path.exists('/Users')) # 用来判断文件是否存在print(os.path.isdir('/Users')) # 判断 Users是否是路径print(os.path.exists('/ck'))# 路径拼接的操作os.path.join('/tmp/原创 2021-02-08 17:14:57 · 209 阅读 · 0 评论 -
简单了解正则表达式里面math、search、sub、findall函数的区别是什么?
# 正则表达式里面math和search函数的区别是什么?# match模式: 完全匹配分组,在匹配之前必须很清楚要匹配的字符串长的是什么样的# search模式:搜索匹配,如果第一个匹配不到会往后延,直到搜索完待匹配的字符串...原创 2021-02-08 15:50:32 · 453 阅读 · 0 评论 -
用Python实现RPC架构以及RPC调用和HTTP调用的区别
参考原创 2021-02-07 23:58:16 · 162 阅读 · 0 评论 -
Python多线程的一个经典设计模式--->生产者消费者模型
参考原创 2021-02-07 23:44:08 · 121 阅读 · 0 评论 -
Kubernetes(K8S)简介
本文来自于既过不追老哥Kubernetes(K8S)基本概念k8s架构:1个master带多个node,node包换多个pod(最小操作单元)master节点不存储容器,只负责调度、网关、控制器、资源存储pod内部可以1个或多个容器,容器存在pod中,k8s通过pod控制容器kubelet,负责本地pod的维护kube-proxy,负责在pod间做负载均衡podpod是什么,是一个容器,虚拟化分组,是独立的沙箱环境,用来装docker创建的容器,相当于一个独立主机pod.原创 2021-02-07 15:23:46 · 138 阅读 · 0 评论 -
【学习笔记】高级搜索
初级搜索可以优化的方向是:1)不重复 2)剪枝复习DFS、BFS代码模板:剪枝原创 2021-02-07 14:38:38 · 139 阅读 · 0 评论 -
车辆路径问题与相关算法总结
参考链接原创 2021-02-06 22:12:57 · 962 阅读 · 0 评论 -
python补基础学习笔记
文件相关的操作# 文件指针file6 = open('name.txt', encoding='utf-8')print(file6.tell()) # 可以查看当前的文件指针print(file6.read(1))print(file6.tell())file6.seek(0) # seek() 方法用于移动文件读取指针到指定位置print(file6.tell())file6.close()异常处理import re def find_item(hero): w原创 2021-02-06 15:33:35 · 160 阅读 · 0 评论 -
gurobi 高效数学规划引擎 | python3 配置、使用及建模实例
参考原创 2021-02-06 14:05:53 · 299 阅读 · 0 评论 -
GBDT+LR简述+实例
参考原创 2021-02-05 16:39:59 · 174 阅读 · 0 评论 -
Python变量作用域和LEGB原则
参考链接原创 2021-02-03 16:25:30 · 89 阅读 · 0 评论 -
【学习笔记】bisect — 数组二分查找算法
官方文档原创 2021-02-03 11:56:34 · 80 阅读 · 0 评论 -
【学习笔记】并查集Disjoint Set
未写,待完善原创 2021-02-03 11:55:56 · 86 阅读 · 0 评论 -
【学习笔记】字典树Trie
回顾:二叉搜索树:对于每个子树来说,若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;原创 2021-02-01 14:33:19 · 98 阅读 · 0 评论