课程目标
能独立熟练完成Hadoop的安装及熟悉Hadoop的配置与管理
熟练地在Hadoop和操作系统以及关系型数据库之前传递数据
能独立制定数据集成方案
熟练地向Hadoop提交作业以及查询作业运行情况
了解Map-Reduce原理,能书写Map-Reduce程序
了解HDFS原理,能熟练地对HDFS中的文件进行管理
能独立完成pig的安装并且利用pig做简单的数据分析工作
能独立完成Hbase的安装和配置
了解Hbase的原理并能进行简单的shell操作
能独立完成Hive的安装和配置
了解Hive的原理及进行HiveQL操作
一个典型的实验环境
服务器:ESXi,可以在上面部署10多台虚拟机,能同时启动4台
PC:要求linux环境或windows+Cygwin,linux可以是standalone或者使用虚拟机
SSH:windows下可以使用SecureCRT或putty等ssh client程序,作用是用来远程连接linux服务器,linux下可以直接使用ssh命令
Vmware client:用于管理ESXi
Hadoop:使用0.20.2
Hadoop的思想之源:Google
Google搜索引擎,Gmail,安卓,AppspotGoogle Maps,Google earth,Google 学术,Google翻译,Google+,下一步Google what??
Google的低成本之道
不使用超级计算机,不使用存储(淘宝的去i,去e,去o之路)
大量使用普通的pc服务器(去掉机箱,外设,硬盘),提供有冗余的集群服务
全世界多个数据中心,有些附带发电厂
运营商向Google倒付费
集装箱数据中心
位于 Mountain View, Calif 总部的数据中心
总功率为10000千瓦,拥有45个集装箱,每个集装箱中有1160台服务器,该数据中心的能效比为1.25( PUE 为 1 表示数据中心没有能源损耗,而根据2006年的统计,一般公司数据中心的能效比为 2.0 或更高。Google 的 1.16 已经低于美国能源部2011年的1.2 的目标)
Google面对的数据和计算难题
大量的网页怎么存储?
搜索算法
Page-Rank计算问题
倒排索引##
Page Rank
这是Google最核心的算法,用于给每个网页价值评分,是Google“在垃圾中找黄金 ”的关键算法,这个算法成就了今天的Google
Map-reduce思想:计算PR
计算PR值
Google带给我们的关键技术和思想
GFS
Map-Reduce
Bigtable
Hadoop的源起——Lucene
Doug Cutting开创的开源软件,用java书写代码,实现与Google类似的全文搜索功能
,它提供了全文检索引擎的架构,包括完整的查询引擎和索引引擎
早期发布在个人网站和SourceForge,2001年年底成为apache软件基金会jakarta的 一个子项目
Lucene的目的是为软件开发人员提供一个简单易用的工具包,以方便的在目标系统中 实现全文检索的功能,或者是以此为基础建立起完整的全文检索引擎
对于大数量的场景,Lucene面对与Google同样的困难。迫使Doug Cutting学习和模
仿Google解决这些问题的办法
一个微缩版:Nutch
从lucene到nutch,从nutch到hadoop
2003-2004年,Google公开了部分GFS和Mapreduce思想的细节,以此为基础Doug Cutting等人用了2年业余时间实现了DFS和Mapreduce机制,使Nutch性能飙升
Yahoo招安Doug Cutting及其项目
Hadoop 于 2005 年秋天作为 Lucene的子项目 Nutch的 一部分正式引入Apache基金会。2006 年 3 月份,Map-Reduce 和 Nutch Distributed File System (NDFS) 分别被纳入称为 Hadoop 的项目中
名字来源于Doug Cutting儿子的玩具大象
目前Hadoop达到的高度
实现云计算的事实标准开源软件
包含数十个具有强大生命力的子项目
已经能在数千节点上运行,处理数据量和排序时间不断打破世界纪录
Hadoop子项目家族
Hadoop的架构
Namenode
HDFS的守护程序
纪录文件是如何分割成数据块的,以及这些数据块被存储到哪些节点上
对内存和I/O进行集中管理
是个单点,发生故障将使集群崩溃
Secondary Namenode
监控HDFS状态的辅助后台程序
每个集群都有一个
与NameNode进行通讯,定期保存HDFS元数据快照
当NameNode故障可以作为备用NameNode使用
DataNode
每台从服务器都运行一个
负责把HDFS数据块读写到本地文件系统
JobTracker
用于处理作业(用户提交代码)的后台程序
决定有哪些文件参与处理,然后切割task并分配节点
监控task,重启失败的task(于不同的节点)
每个集群只有唯一一个JobTracker, 位于Master节点
TaskTracker
位于slave节点上,与datanode结合
(代码与数据一起的原则)
管理各自节点上的task(由jobtracker分配)
每个节点只有一个tasktracker,但一个tasktracker可以启动多个JVM, 用于并行执行map或reduce任务
与jobtracker交互
Master与Slave
Master:Namenode 、 Secondary Namenode、Jobtracker。浏览器(用于观看 管理界面),其它Hadoop工具
Slave:Tasktracker、Datanode
Master不是唯一的
Why hadoop?
场景:电信运营商信令分析与监测
原数据库服务器配置:HP小型机,128G内存,48颗CPU,2节点RAC,其中一个节点 用于入库,另外一个节点用于查询
存储:HP虚拟化存储,>1000个盘
数据库架构采用Oracle双节点RAC
问题:1 入库瓶颈 2 查询瓶颈
数据分析者面临的问题
数据日趋庞大,无论是入库和查询,都出现性能瓶颈
用户的应用和分析结果呈整合趋势,对实时性和响应时间要求越来越高
使用的模型越来越复杂,计算量指数级上升
数据分析者期待的解决方案
完美解决性能瓶颈,在可见未来不容易出现新瓶颈
过去所拥有的技能可以平稳过渡。比如SQL、R
转移平台的成本有多高?平台软硬件成本,再开发成本,技能再培养成本,维护成本
Hadoop的思想
Hadoop体系下的分析手段
主流:Java程序
轻量级的脚本语言:Pig
SQL技巧平稳过渡:Hive
NoSQL:HBase