题目:计算完全二叉树的节点个数
思路:
1. 不是暴力解决,那样太简单了,遍历一次即可
2. 因为是完全二叉树,所以:
- 满二叉树的节点 = 2^k-1 k为高度
- 完全二叉树中一定有子树为满二叉树
public class Solution {
public int countNodes(TreeNode root) {
if(root == null) return 0;
if(root.left == null && root.right == null) return 1;
int left = countHeight(root.left);
int right = countHeight(root.right);
// 如果最大高度相等,那么是不是说明左孩子就是满二叉树了!
if(left == right)
// 注意这里的位运算,1(01)不是2(10)
return (1 << left) -1 + 1 + countNodes(root.right);
// 如果不等.. 画个图就明白了
return (1 << right) - 1 + 1 + countNodes(root.left);
}
// 计算子树的最大高度
int countHeight (TreeNode root) {
if(root == null) return 0;
int count = 0;
while(root != null) {
root = root.left;
count++;
}
return count;
}
}
上面是一种思路,通过比较左右子树的最大高度,另一种就是通过比较左子树的最大高度,与
右子树的最小高度,如果相等,那么这棵树就一定是满二叉树了!如果不等,那就再计算 :
countNodes(root.left ,) + countNodes(root.right) +1;==>不过这种总有个测试用例通过
不了 ==> TLE 超时