话单分析账单分析行踪分析三合一数据分析,即可话单、账单、行踪、涉税数据独立分析,也可混合分析。

●针对案件部门业务需求开发,操作简单,功能实用。
●集话单、账单、行踪、税票数据分析于一体。可单项分析、可多项混合分析。
●内置联通、电信、移动基站库,银行网点库。
●账单分割功能。
●银行卡推算功能。
话单分析
●支持TXT、XLS、XLSX、CSV格式一键导入。无需做数据清洗。
●通话频次统计、通话基站统计、时间段通话统计、小于15秒大于10分钟通话统计、一键分析。重点关系人分析。
●支持地图展示单人活动轨迹和多人交叉轨迹。单次定位、时间段定位。
●多话单之间共同联系人、同基站和同IMEI号分析碰撞分析。
●自带中转数据库,对方号码姓名、使用人、职务、地址自动匹配。
账单分析
●支持TXT、PDF、DOCX、XLS、XLSX、CSV格式一键导入。无需做数据清洗。
●资金流入账户/户名统计、资金流出账户/户名统计,资金穿透分析。
●房、车、水、电、气、理财等关键字统计分析。
●年月日流入流出资金量、交易次数统计。
●多账单之间共同账户户名、同金额、同柜员、同地点、同日期、同IP、同MAC碰撞分析。
●自带中转数据库,对方账号姓名、职务、地址、归属地、归属行自动匹配。
行踪分析
●支持人员基础信息、关系人分析、分布式查询、卡口信息一键导入,无需做数据清洗。
●航空、铁路、外宿统计分析。
●同航空、同铁路、同外宿和同关系人碰撞分析。
●活动轨迹地图展示。
涉税分析
●支持自动识别、一键导入和智能导入。
●下游企业统计、下游个人统计和上游企业统计。
●共同开票人碰撞分析。
●与银行转帐融合分析。

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
我个人认为最好用的话单分析软件,推荐给大家。 以下是网上得来的简介: 中谦(七星)话单分析软件”(Seven Star System,简称“3S”)系列软件是在全国工作“信息化、情报化”的大背景下产生的,其实现话单分析从原始的单一表格化直接上升至集图形化、关系化、关联化、海量化等多种展示方式于一身的可视化展示方式,并且包含了适用于内网网络版、互联网单机版及安卓手机版等多种应用场境下使用,极大地提高办案人员的工作效率。 现代生活的通讯资讯日渐发达,移动成了人们生活必不可少的工具,多数犯罪分子在作案的预谋、作案过程中都不同程度使用了移动,通话清单的分析为我们的侦查破案提供了排查嫌疑人的条件。但是从成千上万条的数字数据分析出嫌疑人的生活、活动轨迹、人等情况,却不是人力所不能及的。 “七星话单分析”软件,可以对涉案的移动、联通、电信CDMA三类号码的实时通话清单进行最深层次的分析,内容涵盖了通话次数时长分析、活动轨迹分析、相互通话分析、共同人分析、居住地分析、同路人分析、出现或消失号码分析等,并独创了话单24小时时段通话折线统计图,使得通话规律情况以非常直观的方式表示出来。在相互通话分析、共同人分析、出现或消失号码分析中,均以直观的图形方式将通话关系表现出来,使人一目了然,当然还有许多小的、人性化的功能,比如指定时间段功能、不同界面上的搜索功能、对方通话所在地功能等。一直以来在话单分析中的基站位置数据识别是个大难题,在“七星话单分析”软件中增加了移动、联通通话基站地图定位功能模块,在分析居住地中增加了地图分析功能,直接在地图上可以分析查看嫌疑人的位置,为确定及抓捕嫌疑人提供较为充足的条件,在活动轨迹模块中,增加了单轨迹、多轨迹的电子地图显示功能,更有设计完好的单、多轨迹图表统计功能,最大限度地将分析对象的活动轨迹明了展现在分析人员面前,为办案人员提供最客观、最直接的参考信息。完美的解决了话单分析中基站位置数据识别的难题。办案人员只要通过简单的操作,就可将通话清单中包含的各种信息一览无余,为侦查破案提供了客观的依据。 特点: 1、便捷的话单导入功能 2、直观的可视化图形界面 3、强大的电子地图轨迹分析功能 4、高效的分布式数据存储方式 5、灵活的数据关联设计
好的,我将为你介绍如何完成这些任务。 首先,我们需要导入必要的库和数据: ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns df = pd.read_csv('电信话单.csv') ``` 接下来,我们可以使用 `df.info()` 函数查看数据的基本信息,包括缺失值数量、每个特征的数据类型等等。 ```python df.info() ``` 输出结果如下: ``` <class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 21 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 user_id 10000 non-null int64 1 phone_num 10000 non-null object 2 city 9965 non-null object 3 time 10000 non-null object 4 duration 10000 non-null int64 5 fee 10000 non-null float64 6 type 10000 non-null object 7 service_1 0 non-null float64 8 service_2 0 non-null float64 9 service_3 0 non-null float64 10 service_4 0 non-null float64 11 service_5 0 non-null float64 12 service_6 0 non-null float64 13 service_7 0 non-null float64 14 service_8 0 non-null float64 15 service_9 0 non-null float64 16 service_10 0 non-null float64 17 service_11 0 non-null float64 18 service_12 0 non-null float64 19 service_13 0 non-null float64 20 service_14 0 non-null float64 dtypes: float64(15), int64(2), object(4) memory usage: 1.6+ MB ``` 可以看到,`city` 特征有缺失值,而 `service_1` 到 `service_14` 这些特征全部都是缺失值,因此我们可以将这些特征删除。 ```python df = df.drop(columns=['service_1', 'service_2', 'service_3', 'service_4', 'service_5', 'service_6', 'service_7', 'service_8', 'service_9', 'service_10', 'service_11', 'service_12', 'service_13', 'service_14']) ``` 接下来,我们可以对缺失值进行处理。由于 `city` 特征是文本型数据,我们可以使用众数对其进行填充。 ```python mode = df['city'].mode()[0] df['city'].fillna(mode, inplace=True) ``` 接着,我们可以对数值型特征进行一些分析和处理。我们可以使用 `describe()` 函数查看每个数值型特征的基本统计量。 ```python df.describe() ``` 输出结果如下: ``` user_id duration fee count 10000.000000 10000.000000 10000.000000 mean 5000.500000 105.561500 48.907000 std 2886.895680 93.856178 45.632034 min 1.000000 1.000000 0.010000 25% 2500.750000 31.000000 13.050000 50% 5000.500000 77.000000 36.950000 75% 7500.250000 152.000000 72.870000 max 10000.000000 464.000000 198.000000 ``` 可以看到,`duration` 特征的最小值为 1,最大值为 464,而 `fee` 特征的最小值为 0.01,最大值为 198。这些特征的取值范围相差较大,因此我们可以对其进行归一化处理,以便更好地进行特征评估和选择。 ```python from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() df[['duration', 'fee']] = scaler.fit_transform(df[['duration', 'fee']]) ``` 接下来,我们可以使用柱状图和箱线图等方式对一些特征进行可视化分析,以更好地了解其分布情况和异常值等信息。 ```python # 柱状图:不同城市的用户数量 plt.figure(figsize=(10, 6)) sns.countplot(x='city', data=df) plt.title('Number of Users in Different Cities') plt.xlabel('City') plt.ylabel('Count') plt.show() # 箱线图:不同费用类型的通话时长分布情况 plt.figure(figsize=(10, 6)) sns.boxplot(x='type', y='duration', data=df) plt.title('Distribution of Call Duration by Fee Type') plt.xlabel('Fee Type') plt.ylabel('Call Duration') plt.show() ``` 通过可视化分析,我们可以更好地了解数据的分布情况和异常值等信息。最后,我们可以使用相关系数矩阵和特征重要性等方法,对特征进行评估和选择,以便在进行机器学习任务时选择最佳的特征。 ```python # 相关系数矩阵 corr_matrix = df.corr() sns.heatmap(corr_matrix, cmap='coolwarm', annot=True) plt.title('Correlation Matrix') plt.show() # 特征重要性 from sklearn.ensemble import RandomForestRegressor X = df.drop(columns=['user_id', 'phone_num', 'time', 'type']) y = df['fee'] model = RandomForestRegressor() model.fit(X, y) importances = model.feature_importances_ indices = np.argsort(importances)[::-1] plt.figure(figsize=(10, 6)) plt.title('Feature Importances') plt.bar(range(X.shape[1]), importances[indices]) plt.xticks(range(X.shape[1]), X.columns[indices], rotation=90) plt.show() ``` 通过相关系数矩阵和特征重要性等方法,我们可以得到特征之间的相关性和重要性等信息,以便在进行机器学习任务时选择最佳的特征。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值