TensorFlow
kaisa158
HIT、机器学习
展开
-
TensorBoard:可视化学习
TensorBoard:可视化学习1. 数据序列化如何将数据序列化,使之图表可视化?对于一个简单的神经网络,如下所示:import tensorflow as tfimport numpy as np def add_layer(inputs, in_size, out_size, activation_function=None): Weights = tf.Variable(tf.ra...原创 2018-06-30 16:07:21 · 188 阅读 · 0 评论 -
基于MNIST设计神经网络识别手写数字(version 2 CNN结构)
基于MNIST设计神经网络识别手写数字(version 2 CNN结构) 这是基于卷积神经网络设计的,他的结构是两个卷积层加上两个全连接层。用tf.train.AdamOptimizer()作为优化器进行优化。准确度比 version1.1(链接)要高。附上主要的代码。1.所有文件2.主要代码1)设计神经网络模块(network_cnn.py)import randomimport ...原创 2018-07-10 16:30:53 · 999 阅读 · 1 评论 -
tf.nn.conv2d和tf.contrib.slim.conv2d的区别
tf.nn.conv2d和tf.contrib.slim.conv2d的区别原文(链接)在查看代码的时候,看到有代码用到卷积层是tf.nn.conv2d,但是也有的使用的卷积层是tf.contrib.slim.conv2d,这两个函数调用的卷积层是否一致,在查看了API的文档,以及slim.conv2d的源码后,做如下总结:首先是常见使用的tf.nn.conv2d的函数,其定义如下:conv2d(...转载 2018-07-10 21:48:17 · 605 阅读 · 0 评论 -
基于MNIST设计神经网络识别手写数字(version 1.1 两层结构)
基于MNIST设计神经网络识别手写数字 这个项目只用了MNIST的数据集,官网地址是这个点击打开链接。基于tensorflow设计神经网络,网络结构只设计了两层,以后会继续优化。升级版做出来了,链接->基于MNIST设计神经网络识别手写数字(version 2 CNN结构)1.所有文件2.主要代码(1)设计神经网络模块(Network.py)import ra...原创 2018-07-05 00:15:36 · 766 阅读 · 0 评论 -
基于MNIST设计神经网络识别手写数字(version 3 ResNet残差网络)
基于MNIST设计神经网络识别手写数字(version 3 ResNet残差网络) 本项目是tensorflow + resnet + mnist Version 3 是基于残差网络设计的,ResNet的论文可以去这里下载(链接),我设计的结构为1个卷积层+6个shortcut+2个全连接层,shortcut的结构如下图所示:Resnet的设计参考了两个人...原创 2018-07-18 14:11:53 · 6417 阅读 · 17 评论 -
padding='SAME'和'VALID'的区别
In this example:Input width = 13 Filter width = 6 Stride = 5Notes:"VALID" only ever drops the right-most columns (or bottom-most rows). "SAME" tries to pad evenly left and right, but if the ...原创 2018-08-05 00:02:10 · 28553 阅读 · 0 评论