kruskal思想:
对图G的所有边按权值从小到大排序,每次取一条边,若此边的两个结点属于同一个连通分量,则舍弃这条边;若不属于同一个连通分量,则将这条边加入到最小生成树中。当所有结点属于同一个连通分量时,构造完毕。
kruskal设计:
一个边的结构体。有几个关键问题:
如何判断两个结点是否属于一个连通分量:
每个连通分量都用其中一个结点来标识,p[]数组用来表示结点的父节点(初始p[i]=i),真正的头结点满足p[i]=i;首先根据传进来的边的两个顶点,用findSet找出点所属的父节点(递归,条件x==p[x]),若父节点相同,显然属于同一个连通分量,直接返回,测试下一条边;否则,合并两个连通分量。
如何合并两个连通分量:
两个连通分量x,y,是将x合并到y还是y合并到x?这就用一个rank数组来确定(初始rank[]=0)。如果rank[x]>rank[y],则将y合并到x,即p[y] = x;否则,将x合并到y,即p[x] = y,如果rank[x]=rank[y],还要将rank[y]加1。
例:
初始传入最小边ab,rank[a]==0==rank[b],则将rank[b]加1,p[a]=b;
传入边ac,a属于分量b,c属于分量c,且rank[b]==1 > 0==rank[c],则p[c]=b;
同理传入ad,ae之后,p[d],p[e]都等于b。
传入边fg,同传入ab;
传入边bg,rank[b]==1==rank[g],则p[g]=b,rank[b]++;
传入边be,b与e同属于b,直接返回,最小生成树构造完毕!
代码如下:
#include <iostream>
using namespace std;
int n; //结点个数
int m; //边的条数
int p[26]; //用来寻找某个点属于的子连通图(P[i] == i)
int rank[26]; //若i属于某连通分量且p[i] = i;则用rank[i]来判断合并两个连通分量将哪个作为哪个的子集
int result;
typedef struct edge
{
int v1;
int v2;
int w;
}Edge;
Edge e[75];
int cmp(const void *a, const void *b)
{
return (*(Edge *)a).w - (*(Edge *)b).w;
}
void initial()
{
memset(e,0,sizeof(Edge)*75);
m = 0;
result = 0;
}
int findSet(int x) //找属于的集合
{
if(x != p[x])
p[x] = findSet(p[x]);
return p[x];
}
void Union(int x, int y, int w) /*****更改集合*****/
{
if(x == y) return;
if(rank[x] > rank[y])
{
p[y] = x;
}
else
{
p[x] = y;
if(rank[x] == rank[y])
rank[y] ++;
}
result += w;
}
int kruskal()
{
int i;
for(i = 0; i < 26; i++)
{
rank[i] = 0;
p[i] = i;
}
qsort(e,m,sizeof(Edge),cmp);
for(i = 0; i < m; i++)
Union(findSet(e[i].v1), findSet(e[i].v2), e[i].w);
return result;
}
int main()
{
int i,j;
char v1;
int num;
char v2;
int w;
while(cin>>n && n!=0)
{
initial();
for(i = 1; i < n; i++)
{
cin>>v1>>num;
for(j = 0; j < num; j++)
{
cin>>v2>>w;
e[m].v1 = v1-'A';
e[m].v2 = v2 -'A';
e[m].w = w;
m++;
}
}
printf("%d\n",kruskal());
}
return 0;
}