poj 1088滑雪问题

题意:给出一个图,求图上的一条最长的下降路径。

 

思路:很经典的DP,求二维的最长下降子序列。用记忆化的搜索,构造以每个点为起点的最长下降路径,结合DP的状态方程:DP[i][j] = max(DP[i-1][j],DP[i+1][j],DP[i][j-1],DP[i][j+1]) + 1。(if map[i][j] > map[x][y] && (x,y) in the map)。

 

代码如下:

#include<iostream>
using namespace std;
const int Max = 105;

int row, col;
int map[Max][Max];                           //  记录图各点的高度。
int dp[Max][Max];                            //  记录以各点为起点的最长下降路径的长度。

int dfs(int r, int c)
{
    if(dp[r][c] != 0)  
		return dp[r][c];      //  若dp[r][c]不为0,则表示它已被访问。
    int max = 1;
    if(r + 1 <= row && map[r][c] > map[r + 1][c])
	{
        int len = dfs(r + 1, c) + 1;
        if(len > max) 
			max = len;
    }
    if(r - 1 >= 1 && map[r][c] > map[r - 1][c])
	{
        int len = dfs(r - 1, c) + 1;
        if(len > max)  
			max = len;
    }
    if(c + 1 <= col && map[r][c] > map[r][c + 1])
	{
        int len = dfs(r, c + 1) + 1;
        if(len > max)  
			max = len;
    }
    if(c - 1 >= 1 && map[r][c] > map[r][c - 1])
	{
        int len = dfs(r, c - 1) + 1;
        if(len > max)  
			max = len;
    }
    return map[r][c] = max; 
}

int main()
{
    int i, j;
    cin >> row >> col;
    for(i = 1; i <= row; i ++)
        for(j = 1; j <= col; j ++)
            cin >> map[i][j];
		int ans = 0;
		memset(dp, 0, sizeof(dp));
		for(i = 1; i <= row; i ++)
			for(j = 1; j <= col; j ++)
			{
				dp[i][j] = dfs(i, j);  //  用记忆化搜索求出dp[i][j],同时也求出了其路径上的dp[x][y]。
				if(dp[i][j] > ans)
					ans = dp[i][j];
			}
			cout << ans << endl;
			return 0;
}

 

题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值