大致题意:
输入一个n层的三角形,第i层有i个数,求从第1层到第n层的所有路线中,权值之和最大的路线。
规定:第i层的某个数只能连线走到第i+1层中与它位置相邻的两个数中的一个。
解题方法:
用二维数组way[][]靠左存储三角形内的数据,那么连线规则变更为
way[i][j] → Way[i+1][j]
或 Way[i][j] → Way[i+1][j+1]
注意:way[][]初始化为输入时的三角形数值,此时way[i][j]表示该点位置上的权值,没输入的位置初始化为0。
代码如下:
#include <iostream>
using namespace std;
const int N=360;
int wei[N][N],n;
int max(int a, int b)
{
return a>b?a:b;
}
int main()
{
int i,j;
while (cin>>n)
{
for (i=0;i<N;i++)
for(j=0;j<N;j++)
wei[i][j]=0;
for(i=1;i<=n;i++)
{
for(j=1;j<=i;j++)
cin>>wei[i][j];
}
int max_weight=0;
for (i=1;i<=n;i++)
{
for(j=1;j<=i;j++)
{
wei[i][j]+=max(wei[i-1][j-1],wei[i-1][j]);
if (i==n&&max_weight<=wei[i][j])
{
max_weight=wei[i][j];
}
}
}
cout<<max_weight<<endl;
}
return 0;
}