线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点。
对于线段树中的每一个非叶子节点[a,b],它的左儿子表示的区间为[a,(a+b)/2],右儿子表示的区间为[(a+b)/2+1,b]。因此线段树是平衡二叉树,最后的子节点数目为N,即整个线段区间的长度。
使用线段树可以快速的查找某一个节点在若干条线段中出现的次数,时间复杂度为O(logN)。而未优化的空间复杂度为2N,因此有时需要离散化让空间压缩。
线段树至少支持下列操作:
Insert(t,x):将包含在区间 int 的元素 x 插入到树t中;
Delete(t,x):从线段树 t 中删除元素 x;
Search(t,x):返回一个指向树 t 中元素 x 的指针。
线段树的基本图形如下所示:
线段树的数据结构一般采取如下所示:
struct data
{
int l, r, num;
}node[3*Max]; // 线段树节点的数据结构。
线段树的构建:
void BuildTree(int left, int right, int u)
{ // 建树。
node[u].l = left;
node[u].r = right;
if(left == right)
node[u].num = num[left];
else
{
BuildTree(left, (left+right)/2, 2*u);
BuildTree((left+right)/2+1, right, 2*u+1);
node[u].num = node[2*u].num + node[2*u+1].num;
}
}
线段树的查询:
int query(int left, int right, int u)
{ // 查询。
if(node[u].l == left && node[u].r == right)
return node[u].num;
if(right <= node[2*u].r)
return query(left, right, 2*u);
if(left >= node[2*u+1].l)
return query(left, right, 2*u+1);
int a = query(left, (node[u].l+node[u].r)/2, 2*u);
int b = query((node[u].l+node[u].r)/2+1, right, 2*u+1);
return a + b;
}
线段树的修改:
int updata(int camp, int w, int u)
{ // 修改。
node[u].num += w;
if(node[u].l == node[u].r)
return 0;
else
if(camp <= node[2*u].r)
updata(camp, w, 2*u);
else
updata(camp, w, 2*u+1);
return 0;
}