线段树简介

     线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点。

  对于线段树中的每一个非叶子节点[a,b],它的左儿子表示的区间为[a,(a+b)/2],右儿子表示的区间为[(a+b)/2+1,b]。因此线段树是平衡二叉树,最后的子节点数目为N,即整个线段区间的长度。

  使用线段树可以快速的查找某一个节点在若干条线段中出现的次数,时间复杂度为O(logN)。而未优化的空间复杂度为2N,因此有时需要离散化让空间压缩。

  线段树至少支持下列操作:

  Insert(t,x):将包含在区间 int 的元素 x 插入到树t中;

  Delete(t,x):从线段树 t 中删除元素 x;

  Search(t,x):返回一个指向树 t 中元素 x 的指针。

线段树的基本图形如下所示:


线段树的数据结构一般采取如下所示:

 

struct data
{
    int l, r, num;
}node[3*Max];     //  线段树节点的数据结构。

 
线段树的构建:

void BuildTree(int left, int right, int u)
{      //  建树。
    node[u].l = left;
    node[u].r = right;
    if(left == right) 
        node[u].num = num[left];
    else
	{
        BuildTree(left, (left+right)/2, 2*u);
        BuildTree((left+right)/2+1, right, 2*u+1);
        node[u].num = node[2*u].num + node[2*u+1].num;
    }
}

线段树的查询:

int query(int left, int right, int u)
{           //  查询。
    if(node[u].l == left && node[u].r == right)
        return node[u].num;
    if(right <= node[2*u].r)
        return query(left, right, 2*u);
    if(left >= node[2*u+1].l)
        return query(left, right, 2*u+1);
    int a = query(left, (node[u].l+node[u].r)/2, 2*u);
    int b = query((node[u].l+node[u].r)/2+1, right, 2*u+1);
    return a + b;
}

 

线段树的修改:

int updata(int camp, int w, int u)
{              //  修改。
    node[u].num += w;
    if(node[u].l == node[u].r) 
		return 0;
    else 
		if(camp <= node[2*u].r) 
			updata(camp, w, 2*u);
    else 
		updata(camp, w, 2*u+1);
    return 0;
}

 

 

 

 


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值