拳打 ES 脚踢 Loki,VictoriaLogs 正式版来了_快猫星云Flashcat
docker部署ELK日志系统+kafka_docker安装elk+kafka-CSDN博客
docker run --rm -it -p 9428:9428 -v ./victoria-logs-data:/victoria-logs-data \
docker.io/victoriametrics/victoria-logs:v1.0.0-victorialogs
从docker拉取镜像迅速配置vl
配置日志采集规则
创建kafka的数据存储目录,并赋予目前权限:
chmod 777 kafka_data
创建VL的数据存储目录,并赋予目前权限:
chmod 777 vl_data
logstash的镜像相对来说比较难找
如果您计划使用 Kafka 的 KRaft 模式(Kafka Raft),那么可以完全移除 ZooKeeper。KRaft 模式是 Kafka 未来的发展方向,旨在替代 ZooKeeper 进行元数据管理。以下是如何配置 Kafka 使用 KRaft 模式的步骤:
1. 移除 ZooKeeper:
- 从 docker-compose.yml 中删除 ZooKeeper 服务。
- 配置 Kafka 使用 KRaft 模式:
- 确保 KAFKA_ENABLE_KRAFT 设置为 "yes"。
- 设置 KAFKA_KRAFT_CLUSTER_ID 为一个唯一的 UUID。
- 移除 KAFKA_CFG_ZOOKEEPER_CONNECT。
docker compose 配置文件
version: '3.3'
services:
kafka:
image: bitnami/kafka:3.3.2
container_name: kafka1
hostname: kafka
volumes:
- ./kafka_data:/bitnami/kafka
ports:
- "9092:9092"
- "29093:9093" # 修改外部端口为 29093
environment:
# KRaft 模式配置
KAFKA_ENABLE_KRAFT: "yes"
KAFKA_CFG_PROCESS_ROLES: "broker,controller"
KAFKA_CFG_CONTROLLER_LISTENER_NAMES: "CONTROLLER"
KAFKA_CFG_LISTENERS: "PLAINTEXT://:9092,CONTROLLER://:9093"
KAFKA_CFG_LISTENER_SECURITY_PROTOCOL_MAP: "CONTROLLER:PLAINTEXT,PLAINTEXT:PLAINTEXT"
KAFKA_CFG_ADVERTISED_LISTENERS: "PLAINTEXT://123.207.73.78:9092"
KAFKA_CFG_CONTROLLER_QUORUM_VOTERS: "1@kafka:9093"
KAFKA_KRAFT_CLUSTER_ID: "FDAF211E728140229F6FCDF4ADDC0B32"
ALLOW_PLAINTEXT_LISTENER: "yes"
KAFKA_BROKER_ID: 1
KAFKA_CFG_NODE_ID: 1
KAFKA_HEAP_OPTS: "-Xmx512M -Xms256M"
restart: always
victorialogs:
image: docker.io/victoriametrics/victoria-logs:v1.0.0-victorialogs
container_name: victorialogs
hostname: victorialogs
volumes:
- ./ victoria-logs-data:/usr/share/victorialogs/data # 赋予es_data目前权限:chmod 777 es_data
restart: always
environment:
- "discovery.type=single-node"
- "ES_JAVA_OPTS=-Xms1024m -Xmx1024m"
ports:
- "9428:9428"
logstash:
image: docker.elastic.co/logstash/logstash:7.4.2
container_name: logstash
volumes:
- ./conf.d/syslog.conf:/usr/share/logstash/pipeline/logstash.conf
- ./logstash.yml:/usr/share/logstash/config/logstash.yml
depends_on:
- victorialogs
environment:
LS_JAVA_OPTS: "-Xmx256m -Xms128m"
victorialogs_HOST: "http://123.207.73.78:9428"
kibana:
image: kibana:7.4.2
restart: always
container_name: kibana1
ports:
- 5601:5601
environment:
victorialogs_URL: "http://123.207.73.78:9428"
depends_on:
- victorialogs
测试kafka是否配置完成
#进入容器
docker exec -it 容器id bash
#进入到bin目录
cd /opt/kafka/bin/
#创建topic测试
./kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic elk-log
./kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic elk-log
#查看topic
kafka-topics.sh --list --zookeeper localhost:2181
#删除topic
kafka-topics.sh --delete --zookeeper localhost -topic elk-log
#测试是否成功
#生产者,发送消息
./kafka-console-producer.sh --broker-list localhost:9092 --topic elk-log
#消费者,订阅消息
./kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic elk-log
配置logstash
#创建挂载配置
mkdir -p /data/elk/logstash
vi /data/elk/logstash/logstash.yml
#配置内容
http.host: "0.0.0.0"
xpack.monitoring.elasticsearch.hosts: [ "http://elasticsearch容器ip:9200" ]
xpack.monitoring.elasticsearch.username: elastic
xpack.monitoring.elasticsearch.password: changeme
path.config: /data/docker/logstash/conf.d/*.conf
path.logs: /var/log/logstash
mkdir -p /data/elk/logstash/conf.d
vi /data/elk/logstash/conf.d/syslog.conf
#配置内容
input {
kafka {
bootstrap_servers => "localhost:9092"
topics => ["system-provder-log"] # kafka主题
codec => "json"
auto_offset_reset => "earliest" #从最早的偏移量开始消费
decorate_events => true #此属性会将当前topic、offset、group、partition等信息也带到message中
type => "system_log" #所有插件通用属性,尤其在input里面配置多个数据源时很有用
}
}
# 解决与中国本地时间偏移8小时问题
filter {
ruby {
code => "event.set('timestamp', event.get('@timestamp').time.localtime + 8*60*60)"
}
# grok 从日志正则匹配得到
grok {
match => {"message"=> "%{TIMESTAMP_ISO8601:timestamp}"}
}
mutate {
convert => ["timestamp", "string"]
gsub => ["timestamp", "T([\S\s]*?)Z", ""]
gsub => ["timestamp", "-", "."]
}
}
output {
# 如果不需要打印可以直接删除
stdout {
codec => rubydebug {metadata => true} #logstash控制台输出日志和@metadata信息
}
# 通过type用于区分不同来源的日志
if [type] == "system_log" {
elasticsearch {
hosts => ["http://localhost:9200"]
index => "system_log-%{timestamp}"
}
}
}
日志发送队列 创建发送者
package com.it.weblogclient.LogDeque;
import io.micrometer.common.util.StringUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Component;
import java.util.concurrent.LinkedBlockingDeque;
@Component
public class LogDeque {
/**
* 本地队列
*/
private static LinkedBlockingDeque<String> logMsgs = new LinkedBlockingDeque<>();
@Autowired
private KafkaTemplate<String, Object> kafkaTemplate;
public void log(String msg) {
logMsgs.offer(msg);
}
public LogDeque() {
new LogThread().start();
}
/**
* 创建线程,从队列中获取日志内容,然后以异步的形式发送消息到MQ
*/
class LogThread extends Thread {
@Override
public void run() {
while (true) {
String msgLog = logMsgs.poll();
if (!StringUtils.isEmpty(msgLog)) {
// 发送消息
kafkaTemplate.send("weblog", msgLog);
kafkaTemplate.send("mongolog", msgLog);
}
// 避免cpu飙高的问题
try {
Thread.sleep(200);
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
}
日志切面
将带有注解的部分写入队列
package com.it.weblogclient.aop;
import com.alibaba.fastjson.JSONObject;
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.it.weblogclient.LogDeque.LogDeque;
import jakarta.servlet.http.HttpServletRequest;
import lombok.extern.slf4j.Slf4j;
import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.aspectj.lang.annotation.Pointcut;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import org.springframework.web.context.request.RequestContextHolder;
import org.springframework.web.context.request.ServletRequestAttributes;
import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
import java.util.stream.Collectors;
@Aspect
@Component
@Slf4j
public class MethodAspect {
@Autowired
private LogDeque logDeque;
private static final Logger logger = LoggerFactory.getLogger(OperateAspect.class);
@Pointcut("@annotation(com.it.weblogclient.annotation.Weblog)")
public void weblogPointcut() {
}
@Before("weblogPointcut()")
public void methodBefore(JoinPoint joinPoint) {
ServletRequestAttributes requestAttributes = (ServletRequestAttributes) RequestContextHolder.getRequestAttributes();
HttpServletRequest request = requestAttributes.getRequest();
JSONObject jsonObject = new JSONObject();
// 设置日期格式
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
jsonObject.put("request_time", df.format(new Date()));
jsonObject.put("request_url", request.getRequestURL().toString());
jsonObject.put("request_ip", request.getRemoteAddr());
jsonObject.put("request_method", request.getMethod());
jsonObject.put("request_args", Arrays.toString(joinPoint.getArgs()));
// 将日志信息投递到MQ
String logMsg = jsonObject.toJSONString();
log.info("<AOP日志 ===》 MQ投递消息:{}>", logMsg);
// 投递msg
logDeque.log(logMsg);
}
}