题意
分析
赛中直接暴力水过去了,现在补一个正解。
拿到题目分析,如果是暴力枚举边,复杂度是qmlogm肯定是不行的。
有些人会想,那我预处理一下边,然后修改时单点插入和删除,这样修改可以做到O(1),但还是得枚举边qm的复杂度也逃不掉,顶多少了一个log。
还有一些高端选手可能就直接上待修莫队了,但常数也是大的吓人,因此题解中给到了线段树的优化。
我们把线段树上的每个点都看成一个集合,代表了选择[l,r]范围的边所构成最小生成树的边集,这样每个点集其实最多只有n-1条边,一下子就减少了不知多少复杂度,因为n只有200。然后考虑怎么合并区间,如果直接每个区间都sort一下,会带上两个的log复杂度,因此有一种更为优秀的排序出现了,那就是归并排序,而且非常契合于线段树的合并操作,且只有O(n)的复杂度。所以我们建一棵线段树只要mlogm的复杂度,每次查询也只有qnlogm而已,完全符合要求。
Code
#include <bits/stdc++.h>
using namespace std;
//#define ACM_LOCAL
#define fi first
#define se second
#define il inline
#define re register
typedef long long ll;
typedef pair<int, int> PII;
typedef unsigned long long ull;
const int N = 1e5 + 10;
const int M = 1e6 + 10;
const int INF = 0x3f3f3f3f;
const double eps = 1e-5;
const int MOD = 1e9 + 7;
struct Edge {
int u, v, w;
bool operator < (const Edge &rhs) const {
return w < rhs.w;
}
}e[M];
struct node {
int l, r;
int seq[405];
}t[N<<2];
int ans[N], fa[N], n, m, q;
int find(int x) {return x == fa[x] ? x : fa[x] = find(fa[x]);}
bool merge(int x, int y) {
int fx = find(x), fy = find(y);
if (fx != fy) {
fa[fx] = fy;
return true;
}
return false;
}
void push_up(int *seq, int *seq1, int *seq2) {
int pos1 = 1, pos2 = 1, pos = 0;
for (int i = 1; i <= n; i++) fa[i] = i;
int tmp[205];
tmp[0] = 0;
while (pos1 <= seq1[0] && pos2 <= seq2[0]) {
if (e[seq1[pos1]].w < e[seq2[pos2]].w) {
if (merge(e[seq1[pos1]].u, e[seq1[pos1]].v)) {
tmp[++pos] = seq1[pos1];
}
pos1++;
} else {
if (merge(e[seq2[pos2]].u, e[seq2[pos2]].v)) {
tmp[++pos] = seq2[pos2];
}
pos2++;
}
}
while (pos1 <= seq1[0]) {
if (merge(e[seq1[pos1]].u, e[seq1[pos1]].v)) {
tmp[++pos] = seq1[pos1];
}
pos1++;
}
while (pos2 <= seq2[0]) {
if (merge(e[seq2[pos2]].u, e[seq2[pos2]].v)) {
tmp[++pos] = seq2[pos2];
}
pos2++;
}
tmp[0] = pos;
for (int i = 0; i <= pos; i++) seq[i] = tmp[i];
}
void build(int u, int l, int r) {
t[u].l = l, t[u].r = r;
if (l == r) {
t[u].seq[0] = 1;
t[u].seq[1] = l;
return;
}
int mid = (l + r) >> 1;
build(u<<1, l, mid);
build(u<<1|1, mid+1, r);
push_up(t[u].seq, t[u<<1].seq, t[u<<1|1].seq);
}
void modify(int u, int pos) {
if (t[u].l == t[u].r) return;
int mid = (t[u].l + t[u].r) >> 1;
if (pos <= mid) modify(u<<1, pos);
else modify(u<<1|1, pos);
push_up(t[u].seq, t[u<<1].seq, t[u<<1|1].seq);
}
void query(int u, int ql, int qr) {
if (ql <= t[u].l && qr >= t[u].r) {
push_up(ans, ans, t[u].seq);
// for (int j = 1; j <= ans[0]; j++) cout << ans[j] << " ";
// cout << endl;
return;
}
int mid = (t[u].l + t[u].r) >> 1;
if (ql <= mid) query(u<<1, ql, qr);
if (qr > mid) query(u<<1|1, ql, qr);
}
void solve() {
cin >> n >> m >> q;
for (int i = 1; i <= m; i++) {
cin >> e[i].u >> e[i].v >> e[i].w;
}
build(1, 1, m);
for (int i = 1; i <= q; i++) {
int opt; cin >> opt;
if (opt == 1) {
int x, y, z, k; cin >> x >> y >> z >> k;
e[x] = {y, z, k};
modify(1, x);
} else {
int l, r; cin >> l >> r;
ans[0] = 0;
query(1, l, r);
if (ans[0] != n-1) printf("Impossible\n");
else {
ll res = 0;
for (int j = 1; j <= ans[0]; j++) res += e[ans[j]].w;
printf("%lld\n", res);
}
}
}
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
#ifdef ACM_LOCAL
freopen("input", "r", stdin);
freopen("output", "w", stdout);
#endif
solve();
}
/*
5 5 3
1 2 1
2 3 2
3 4 3
4 5 4
1 5 3
2 2 5
*/