2021牛客寒假算法基础集训营6 H动态最小生成树 线段树优化kruskal

题意

在这里插入图片描述

分析

赛中直接暴力水过去了,现在补一个正解。

拿到题目分析,如果是暴力枚举边,复杂度是qmlogm肯定是不行的。

有些人会想,那我预处理一下边,然后修改时单点插入和删除,这样修改可以做到O(1),但还是得枚举边qm的复杂度也逃不掉,顶多少了一个log。

还有一些高端选手可能就直接上待修莫队了,但常数也是大的吓人,因此题解中给到了线段树的优化。

我们把线段树上的每个点都看成一个集合,代表了选择[l,r]范围的边所构成最小生成树的边集,这样每个点集其实最多只有n-1条边,一下子就减少了不知多少复杂度,因为n只有200。然后考虑怎么合并区间,如果直接每个区间都sort一下,会带上两个的log复杂度,因此有一种更为优秀的排序出现了,那就是归并排序,而且非常契合于线段树的合并操作,且只有O(n)的复杂度。所以我们建一棵线段树只要mlogm的复杂度,每次查询也只有qnlogm而已,完全符合要求。

Code

#include <bits/stdc++.h>
using namespace std;
//#define ACM_LOCAL
#define fi first
#define se second
#define il inline
#define re register
typedef long long ll;
typedef pair<int, int> PII;
typedef unsigned long long ull;
const int N = 1e5 + 10;
const int M = 1e6 + 10;
const int INF = 0x3f3f3f3f;
const double eps = 1e-5;
const int MOD = 1e9 + 7;
struct Edge {
    int u, v, w;
    bool operator < (const Edge &rhs) const {
        return w < rhs.w;
    }
}e[M];
struct node {
    int l, r;
    int seq[405];
}t[N<<2];
int ans[N], fa[N], n, m, q;
int find(int x) {return x == fa[x] ? x : fa[x] = find(fa[x]);}
bool merge(int x, int y) {
    int fx = find(x), fy = find(y);
    if (fx != fy) {
        fa[fx] = fy;
        return true;
    }
    return false;
}
void push_up(int *seq, int *seq1, int *seq2) {
    int pos1 = 1, pos2 = 1, pos = 0;
    for (int i = 1; i <= n; i++) fa[i] = i;
    int tmp[205];
    tmp[0] = 0;
    while (pos1 <= seq1[0] && pos2 <= seq2[0]) {
        if (e[seq1[pos1]].w < e[seq2[pos2]].w) {
            if (merge(e[seq1[pos1]].u, e[seq1[pos1]].v)) {
                tmp[++pos] = seq1[pos1];
            }
            pos1++;
        } else {
            if (merge(e[seq2[pos2]].u, e[seq2[pos2]].v)) {
                tmp[++pos] = seq2[pos2];
            }
            pos2++;
        }
    }
    while (pos1 <= seq1[0]) {
        if (merge(e[seq1[pos1]].u, e[seq1[pos1]].v)) {
            tmp[++pos] = seq1[pos1];
        }
        pos1++;
    }
    while (pos2 <= seq2[0]) {
        if (merge(e[seq2[pos2]].u, e[seq2[pos2]].v)) {
            tmp[++pos] = seq2[pos2];
        }
        pos2++;
    }
    tmp[0] = pos;
    for (int i = 0; i <= pos; i++) seq[i] = tmp[i];
}
void build(int u, int l, int r) {
    t[u].l = l, t[u].r = r;
    if (l == r) {
        t[u].seq[0] = 1;
        t[u].seq[1] = l;
        return;
    }
    int mid = (l + r) >> 1;
    build(u<<1, l, mid);
    build(u<<1|1, mid+1, r);
    push_up(t[u].seq, t[u<<1].seq, t[u<<1|1].seq);
}
void modify(int u, int pos) {
    if (t[u].l == t[u].r) return;
    int mid = (t[u].l + t[u].r) >> 1;
    if (pos <= mid) modify(u<<1, pos);
    else modify(u<<1|1, pos);
    push_up(t[u].seq, t[u<<1].seq, t[u<<1|1].seq);
}
void query(int u, int ql, int qr) {
    if (ql <= t[u].l && qr >= t[u].r) {
        push_up(ans, ans, t[u].seq);
//        for (int j = 1; j <= ans[0]; j++) cout << ans[j] << " ";
//        cout << endl;
        return;
    }
    int mid = (t[u].l + t[u].r) >> 1;
    if (ql <= mid) query(u<<1, ql, qr);
    if (qr > mid) query(u<<1|1, ql, qr);
}
void solve() {
    cin >> n >> m >> q;
    for (int i = 1; i <= m; i++) {
        cin >> e[i].u >> e[i].v >> e[i].w;
    }
    build(1, 1, m);
    for (int i = 1; i <= q; i++) {
        int opt; cin >> opt;
        if (opt == 1) {
            int x, y, z, k; cin >> x >> y >> z >> k;
            e[x] = {y, z, k};
            modify(1, x);
        } else {
            int l, r; cin >> l >> r;
            ans[0] = 0;
            query(1, l, r);
            if (ans[0] != n-1) printf("Impossible\n");
            else {
                ll res = 0;
                for (int j = 1; j <= ans[0]; j++) res += e[ans[j]].w;
                printf("%lld\n", res);
            }
        }
    }
}

signed main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
#ifdef ACM_LOCAL
    freopen("input", "r", stdin);
    freopen("output", "w", stdout);
#endif
    solve();
}
/*
5 5 3
1 2 1
2 3 2
3 4 3
4 5 4
1 5 3
2 2 5
 */


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值