2019 ICPC Asia Yinchuan Regional D - Easy Problem 莫比乌斯反演 + 欧拉降幂

原题链接:https://nanti.jisuanke.com/t/42384

题意

给定一个序列,我们称一个序列最大公因数为d,元素个数为n,大小不超过m的序列为(n, m, k)三元组,设序列a1,a2,a3…an为q,求f(q, k)表示所有满足条件的(a1, a2, a3…an)k 之和。

分析

转化一下题意,列出式子
∑ a 1 = 1 m ∑ a 2 = 1 m . . . ∑ a n = 1 m ( a 1 a 2 a 3 . . . a n ) k [ g c d ( a 1 , a 2 . . . a n ) = = d ] \sum_{a_1=1}^{m}\sum_{a_2=1}^{m}...\sum_{a_n=1}^{m}(a_1a_2a_3...a_n)^k[gcd(a_1,a_2...a_n)==d] a1=1ma2=1m...an=1m(a1a2a3...an)k[gcd(a1,a2...an)==d]
提出一个d
∑ a 1 = 1 m / d ∑ a 2 = 1 m / d . . . ∑ a n = 1 m / d d n k ( a 1 a 2 a 3 . . . a n ) k [ g c d ( a 1 , a 2 . . . a n ) = = 1 ] \sum_{a_1=1}^{m/d}\sum_{a_2=1}^{m/d}...\sum_{a_n=1}^{m/d}d^{nk}(a_1a_2a_3...a_n)^k[gcd(a_1,a_2...a_n)==1] a1=1m/da2=1m/d...an=1m/ddnk(a1a2a3...an)k[gcd(a1,a2...an)==1]
对gcd反演
∑ a 1 = 1 m / d ∑ a 2 = 1 m / d . . . ∑ a n = 1 m / d d n k ( a 1 a 2 a 3 . . . a n ) k ∑ a 1 ∣ t , a 2 ∣ t . . μ ( t ) \sum_{a_1=1}^{m/d}\sum_{a_2=1}^{m/d}...\sum_{a_n=1}^{m/d}d^{nk}(a_1a_2a_3...a_n)^k\sum_{a_1|t ,a2|t..}\mu(t) a1=1m/da2=1m/d...an=1m/ddnk(a1a2a3...an)ka1t,a2t..μ(t)
交换枚举顺序
∑ t = 1 m / d t n k μ ( t ) ∑ a 1 = 1 m / t d ∑ a 2 = 1 m / t d . . . ∑ a n = 1 m / t d d n k ( a 1 a 2 a 3 . . . a n ) k \sum_{t=1}^{m/d}t^{nk}\mu(t)\sum_{a_1=1}^{m/td}\sum_{a_2=1}^{m/td}...\sum_{a_n=1}^{m/td}d^{nk}(a_1a_2a_3...a_n)^k t=1m/dtnkμ(t)a1=1m/tda2=1m/td...an=1m/tddnk(a1a2a3...an)k
观察后面的式子,利用多项式知识可以化简为

∑ t = 1 m / d t n k μ ( t ) d n k ( 1 k + 2 k + . . . + ( m / t d ) k ) n \sum_{t=1}^{m/d}t^{nk}\mu(t)d^{nk}(1^k+2^k+...+(m/td)^k)^n t=1m/dtnkμ(t)dnk(1k+2k+...+(m/td)k)n
由于n的范围很大,要用到欧拉降幂。
后面的式子可以O(n)预处理一遍,然后最后枚举也是O(n)就可以了。

Code

#include <bits/stdc++.h>
using namespace std;
//#define ACM_LOCAL
#define re register
#define fi first
#define se second
const int N = 1e6 + 10;
const int M = 1e6 + 10;
const int INF = 0x3f3f3f3f;
const double eps = 1e-4;
const int MOD = 59964251;
typedef long long ll;
typedef pair<int, int> PII;
ll prime[N], mu[N];
ll phi[N], ff[N], k, K;
bool is_prime[N];
ll ksm(ll a, ll b) {
    ll res = 1, base = a;
    while (b) {
        if (b & 1) res = res * base % MOD;
        base = base * base % MOD;
        b >>= 1;
    }
    return res;
}
void init(int n) {
    memset(is_prime, true, sizeof is_prime);
    mu[1] = 1; phi[1] = 1;
    for (re int i = 2; i < n; ++i) {
        if (is_prime[i]) prime[++k] = i, mu[i] = -1, phi[i] = i-1;
        for (re int j = 1; j <= k && i * prime[j] < n; ++j) {
            is_prime[i * prime[j]] = false;
            if (i % prime[j] == 0) {
                phi[i * prime[j]] = phi[i] * prime[j];
                break;
            } else {
                mu[i * prime[j]] = -mu[i];
                phi[i * prime[j]] = phi[i] * (prime[j] - 1);
            }
        }
    }
}
ll get_phi(ll n) {
    ll m = (int)sqrt(n + 0.5);
    ll ans = n;
    for (ll i = 2; i <= m; ++ i) {
        if (n % i == 0) {
            ans = ans / i * (i - 1);
            while(n % i == 0) n /= i;
        }
    }
    if (n > 1) ans = ans / n * (n - 1);
    return ans;
}
ll mod(ll a, ll mm) {return a >= mm ? a % mm + mm : a;}
ll mm, _n;
ll calc(ll m) {
    ll ans = 0;
    ff[0] = 0;
    for (int i = 1; i <= m; ++i) {
        ff[i] = (ff[i-1] + ksm(i, K)) % MOD;
    }
    for (int i = 1; i <= m; i++) {
        ans = (ans + mu[i] * ksm(i, mod(K * _n, mm)) % MOD * ksm(ff[m/i], _n) % MOD + MOD) % MOD;
    }
    return ans;
}
void solve() {
    mm = get_phi(MOD);
    init(1e5 + 5);
    int T; cin >> T; while (T--) {
        string n; ll m, d;
        cin >> n >> m >> d >> K;
        _n = 0; int flag = 0;
        for (int i = 0; i < n.size(); i++) {
            _n = _n * 10 + n[i] - '0';
            if (_n >= mm) {
                _n %= mm;
                flag = 1;
            }
        }
        if (flag) _n += mm, _n %= mm;
        printf("%lld\n", ksm(d, mod(_n * K, mm)) * calc(m / d) % MOD);
    }
}
signed main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
#ifdef ACM_LOCAL
    freopen("input", "r", stdin);
    freopen("output", "w", stdout);
#endif
    solve();
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值