P3911 最小公倍数之和 莫比乌斯反演

原题链接:https://www.luogu.com.cn/problem/P3911

题意

对 于 a 1 , a 2 , a 3... a n 对于a1,a2,a3...an a1,a2,a3...an

求 ∑ i = 1 n ∑ j = 1 n l c m ( a i , a j ) 求\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(a_i, a_j) i=1nj=1nlcm(ai,aj)

化简

我们要把ai和bj往1-n的数字上去靠,因此设一个cnti和cntj代表i和j分别出现了多少次

写出式子: ∑ i = 1 N ∑ j = 1 N c n t i c n t j l c m ( i , j ) ( 这 里 N 代 表 最 大 数 字 的 值 ) \sum_{i=1}^{N}\sum_{j=1}^{N}cnt_icnt_jlcm(i, j)(这里N代表最大数字的值) i=1Nj=1Ncnticntjlcm(i,j)N
= ∑ i = 1 N ∑ j = 1 N c n t i c n t j i j g c d ( i , j ) =\sum_{i=1}^{N}\sum_{j=1}^{N}cnt_icnt_j\frac{ij}{gcd(i,j)} =i=1Nj=1Ncnticntjgcd(i,j)ij

= ∑ d = 1 N ∑ i = 1 N ∑ j = 1 N c n t i c n t j i j d [ g c d ( i , j ) = d ] =\sum_{d=1}^{N}\sum_{i=1}^{N}\sum_{j=1}^{N}cnt_icnt_j\frac{ij}{d}[gcd(i,j)=d] =d=1Ni=1Nj=1Ncnticntjdij[gcd(i,j)=d]

= ∑ d = 1 N ∑ i = 1 N / d ∑ j = 1 N / d c n t i d c n t j d i j d 2 d [ g c d ( i , j ) = 1 ] =\sum_{d=1}^{N}\sum_{i=1}^{N/d}\sum_{j=1}^{N/d}cnt_{id}cnt_{jd}\frac{ijd^2}{d}[gcd(i,j)=1] =d=1Ni=1N/dj=1N/dcntidcntjddijd2[gcd(i,j)=1]

= ∑ d = 1 N d ∑ i = 1 N / d ∑ j = 1 N / d c n t i d c n t j d i j ∑ t ∣ i , t ∣ j μ ( t ) =\sum_{d=1}^{N}d\sum_{i=1}^{N/d}\sum_{j=1}^{N/d}cnt_{id}cnt_{jd}ij\sum_{t|i,t|j}\mu(t) =d=1Ndi=1N/dj=1N/dcntidcntjdijti,tjμ(t)

= ∑ d = 1 N d ∑ t = 1 N / d μ ( t ) t 2 ∑ i = 1 N / t d ∑ j = 1 N / t d c n t i d t c n t j d t i j =\sum_{d=1}^{N}d\sum_{t=1}^{N/d}\mu(t)t^2\sum_{i=1}^{N/td}\sum_{j=1}^{N/td}cnt_{idt}cnt_{jdt}ij =d=1Ndt=1N/dμ(t)t2i=1N/tdj=1N/tdcntidtcntjdtij

设 F ( T ) = ∑ i = 1 N / t d i c n t i d t 设F(T) =\sum_{i=1}^{N/td}icnt_{idt} F(T)=i=1N/tdicntidt

= ∑ d = 1 N d ∑ t = 1 N / d μ ( t ) t 2 F ( T / t d ) 2 =\sum_{d=1}^{N}d\sum_{t=1}^{N/d}\mu(t)t^2F(T/td)^2 =d=1Ndt=1N/dμ(t)t2F(T/td)2

令 T = t d 令T=td T=td

= ∑ T = 1 N T F ( n / T ) 2 ∑ t ∣ T μ ( t ) t =\sum_{T=1}^{N}TF(n/T)^2\sum_{t|T}\mu(t)t =T=1NTF(n/T)2tTμ(t)t

接 下 来 用 n l o g n 处 理 F 函 数 和 ∑ t ∣ T μ ( t ) t , 由 于 N 最 多 只 有 5 e 4 , 最 后 直 接 O ( n ) 就 可 以 接下来用nlogn处理F函数和\sum_{t|T}\mu(t)t,由于N最多只有5e4,最后直接O(n)就可以 nlognFtTμ(t)tN5e4On

Code

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
typedef long long ll;
typedef pair<int, int> PII;
const int N = 1e5 + 100, M = 5e5 + 5, INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
ll prime[N], mu[N], cnt[N], F[N], H[N];
bool is_prime[N];
inline void init(int n) {
    ll k = 0;
    memset(is_prime, true, sizeof is_prime);
    mu[1] = 1;
    for (int i = 2; i < n; ++i) {
        if (is_prime[i]) prime[++k] = i, mu[i] = -1;
        for (int j = 1; j <= k && i * prime[j] < n; ++j) {
            is_prime[i * prime[j]] = false;
            if (i % prime[j] == 0) {
                break;
            } else {
                mu[i * prime[j]] = -mu[i];
            }
        }
    }
    for (int t = 1; t < n; t++) {
        for (int T = t; T < n; T += t) {
            H[T] += mu[t] * t;
        }
    }
    for (int T = 1; T < n; T++) {
        for (int t = T; t < n; t += T) {
            F[T] += t * cnt[t];
        }
        F[T] /= T;
    }
}

ll ksm(ll a, ll b) {
    ll res = 1, base = a;
    while (b) {
        if (b & 1) res = res * base % MOD;
        base = base * base % MOD;
        b >>= 1;
    }
    return res;
}
ll n, a[N];
void solve() {
    cin >> n;
    for (int i = 1; i <= n; i++) cin >> a[i], cnt[a[i]]++;
    init(N);
    ll ans = 0;
    for (int i = 1; i <= N; i++) {
        ans += i * F[i] * F[i] * H[i];
    }
    cout << ans << endl;
}

signed main() {
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
#ifdef ACM_LOCAL
    freopen("input", "r", stdin);
    freopen("output", "w", stdout);
#endif
    solve();
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值