ZOJ 4009 And Another Data Structure Problem 线段树+循环节+标记永久化

原题链接:https://zoj.pintia.cn/problem-sets/91827364500/problems/91827370220

题意

一个序列有n个元素,你现在有2种操作

1. 输 入 l r , 改 变 a l , a l + 1 . . a r 为 a l 3 , a l + 1 3 . . a r 3 1. 输入l r, 改变al,a_{l+1}..ar为al^3,a_{l+1}^3..a_{r}^3 1.lr,al,al+1..aral3,al+13..ar3
2. 输 入 l r , 查 询 当 前 [ l , r ] 之 间 的 和 , 模 上 99971 2. 输入l r, 查询当前[l, r]之间的和,模上99971 2.lr,[l,r]99971

分析

开始看到立方,先对着式子一顿推导,发现并没有什么规律

原来这题最神奇的地方居然是模数,打个表发现所有的立方操作在这个模数下每48次就会循环,因此可以开48棵线段树,每i棵线段树代表进行了i次立方操作。然后再维护一个懒惰标记,但这里不需要每一次都下传标记,只要在用到的时候加上标记就可以,这时就可以用到标记永久化,即在递归树的时候加上标记。

Code

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <queue>
#include <stack>
#include <string>
#include <set>
#include <map>
#include <bitset>
using namespace std;
//#define ACM_LOCAL
#define re register
#define fi first
#define se second
#define please_AC return 0
const int N = 1e6 + 10;
const int M = 5e6 + 10;
const int INF = 1e9;
const double eps = 1e-4;
typedef long long ll;
const ll MOD = 99971;
typedef unsigned long long ull;
struct node {
    int l, r;
    ll sum[50], tag;
}t[N<<2];
int a[N];
ll calc(ll x) {
    return x * x % MOD * x % MOD;
}
void push_up(int u) {
    for (int i = 0; i < 48; i++) t[u].sum[i] = (t[u<<1].sum[(i+t[u<<1].tag)%48] + t[u<<1|1].sum[(i+t[u<<1|1].tag)%48]) % MOD;
}

void build(int u, int l, int r) {
    t[u].l = l, t[u].r = r; t[u].tag = 0;
    if (l == r) {
        t[u].sum[0] = a[l] % MOD;
        for (int i = 1; i < 48; i++) t[u].sum[i] = calc(t[u].sum[i-1]);
        return;
    }
    int mid = (l + r) >> 1;
    build(u<<1, l, mid);
    build(u<<1|1, mid+1, r);
    push_up(u);
}
void modify(int u, int val, int ql, int qr) {
    if (ql <= t[u].l && qr >= t[u].r) {
        t[u].tag += val;
        return;
    }
    int mid = (t[u].l + t[u].r) >> 1;
    if (ql <= mid) modify(u<<1, val, ql, qr);
    if (qr > mid) modify(u<<1|1, val, ql, qr);
    push_up(u);
}
ll query(int u, int ql, int qr, ll tg) {
    if (ql <= t[u].l && qr >= t[u].r) return t[u].sum[(t[u].tag+tg)%48];
    int mid = (t[u].l + t[u].r) >> 1;
    ll ans = 0;
    if (ql <= mid) ans += query(u<<1, ql, qr, tg + t[u].tag), ans %= MOD;
    if (qr > mid) ans += query(u<<1|1, ql, qr, tg + t[u].tag), ans %= MOD;
    return ans % MOD;
}
void solve() {
    int T; cin >> T; while (T--) {
        int n, m; cin >> n >> m;
        for (int i = 1; i <= n; i++) cin >> a[i];
        build(1, 1, n);
        while (m--) {
            int opt, x, y; cin >> opt >> x >> y;
            if (opt == 1) {
                modify(1, 1, x, y);
            } else {
                cout << query(1, x, y, 0) % MOD << endl;
            }
        }
    }
}

signed main() {
#ifdef ACM_LOCAL
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
#endif
    solve();
    please_AC;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值