原题链接:https://zoj.pintia.cn/problem-sets/91827364500/problems/91827370220
题意
一个序列有n个元素,你现在有2种操作
1.
输
入
l
r
,
改
变
a
l
,
a
l
+
1
.
.
a
r
为
a
l
3
,
a
l
+
1
3
.
.
a
r
3
1. 输入l r, 改变al,a_{l+1}..ar为al^3,a_{l+1}^3..a_{r}^3
1.输入lr,改变al,al+1..ar为al3,al+13..ar3
2.
输
入
l
r
,
查
询
当
前
[
l
,
r
]
之
间
的
和
,
模
上
99971
2. 输入l r, 查询当前[l, r]之间的和,模上99971
2.输入lr,查询当前[l,r]之间的和,模上99971
分析
开始看到立方,先对着式子一顿推导,发现并没有什么规律
原来这题最神奇的地方居然是模数,打个表发现所有的立方操作在这个模数下每48次就会循环,因此可以开48棵线段树,每i棵线段树代表进行了i次立方操作。然后再维护一个懒惰标记,但这里不需要每一次都下传标记,只要在用到的时候加上标记就可以,这时就可以用到标记永久化,即在递归树的时候加上标记。
Code
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <queue>
#include <stack>
#include <string>
#include <set>
#include <map>
#include <bitset>
using namespace std;
//#define ACM_LOCAL
#define re register
#define fi first
#define se second
#define please_AC return 0
const int N = 1e6 + 10;
const int M = 5e6 + 10;
const int INF = 1e9;
const double eps = 1e-4;
typedef long long ll;
const ll MOD = 99971;
typedef unsigned long long ull;
struct node {
int l, r;
ll sum[50], tag;
}t[N<<2];
int a[N];
ll calc(ll x) {
return x * x % MOD * x % MOD;
}
void push_up(int u) {
for (int i = 0; i < 48; i++) t[u].sum[i] = (t[u<<1].sum[(i+t[u<<1].tag)%48] + t[u<<1|1].sum[(i+t[u<<1|1].tag)%48]) % MOD;
}
void build(int u, int l, int r) {
t[u].l = l, t[u].r = r; t[u].tag = 0;
if (l == r) {
t[u].sum[0] = a[l] % MOD;
for (int i = 1; i < 48; i++) t[u].sum[i] = calc(t[u].sum[i-1]);
return;
}
int mid = (l + r) >> 1;
build(u<<1, l, mid);
build(u<<1|1, mid+1, r);
push_up(u);
}
void modify(int u, int val, int ql, int qr) {
if (ql <= t[u].l && qr >= t[u].r) {
t[u].tag += val;
return;
}
int mid = (t[u].l + t[u].r) >> 1;
if (ql <= mid) modify(u<<1, val, ql, qr);
if (qr > mid) modify(u<<1|1, val, ql, qr);
push_up(u);
}
ll query(int u, int ql, int qr, ll tg) {
if (ql <= t[u].l && qr >= t[u].r) return t[u].sum[(t[u].tag+tg)%48];
int mid = (t[u].l + t[u].r) >> 1;
ll ans = 0;
if (ql <= mid) ans += query(u<<1, ql, qr, tg + t[u].tag), ans %= MOD;
if (qr > mid) ans += query(u<<1|1, ql, qr, tg + t[u].tag), ans %= MOD;
return ans % MOD;
}
void solve() {
int T; cin >> T; while (T--) {
int n, m; cin >> n >> m;
for (int i = 1; i <= n; i++) cin >> a[i];
build(1, 1, n);
while (m--) {
int opt, x, y; cin >> opt >> x >> y;
if (opt == 1) {
modify(1, 1, x, y);
} else {
cout << query(1, x, y, 0) % MOD << endl;
}
}
}
}
signed main() {
#ifdef ACM_LOCAL
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
#endif
solve();
please_AC;
}