牛客练习赛91 ABCD题解

本文介绍了三道算法竞赛题目及其解决方案。A题中,利用递归公式解决神奇天平问题;B题分为简单和困难版本,困难版采用并查集在O(n)时间内求解;D题通过前缀和与树状数组解决监狱逃亡问题,统计满足条件的路径数。

比赛链接:https://ac.nowcoder.com/acm/contest/11181#question

A. 神奇天平

每次可以把物品分成m+1份,然后通过一次天平测出重的那份。

接着考虑递归, f ( x ) = f ( x m + 1 ) + 1 f(x)=f(\frac{x}{m+1})+1 f(x)=f(m+1x)+1

#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 10;
const int inf = 1e9;
const int mod = 1e9+7;
typedef long long ll;
typedef pair<int, int> pii;
int dfs(int x, int m) {
    if (x <= m + 1) return 1;
    else {
        if (x % (m+1) == 0) return dfs(x/(m+1), m) + 1;
        else return dfs(x/(m+1)+1, m) + 1;
    }
}
void solve() {
    int T; cin >> T; while (T--) {
        int x, m; cin >> x >> m;
        cout << dfs(x, m) << endl;
    }
}
int main() {
#ifdef ACM_LOCAL
    freopen("input", "r", stdin);
    freopen("output", "w", stdout);
#endif
    ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);
    solve();
}

B. 魔法学院(easy version)

B. 魔法学院(hard version)

easy版本可以用线段树随便写,就不解释了。

hard版本是1e7的数据范围,因此考虑 O ( n ) O(n) O(n)的做法,较小log的做法如并查集也是可以通过的。

这里介绍一下并查集的解法,我们先对魔法的字符按照大到小排序,如果覆盖过的就直接跳过,那么直接用并查集维护下一个节点,如果超过n就退出,这样复杂度可以严格在 O ( n ) O(n) O(n)

#include <bits/stdc++.h>
using namespace std;
const int N = 1e7 + 10;
const int inf = 1e9;
const int mod = 1e9+7;
typedef long long ll;
typedef pair<int, int> pii;
int fa[N];
char s[N];
int find(int x) {return x == fa[x] ? x : fa[x] = find(fa[x]);}
struct node {
    char x;
    int l, r;
    bool operator < (const node &rhs) const {
        return x > rhs.x;
    }
}p[1000010];
void solve() {
    int n, m; scanf("%d%d",&n, &m);
    for (int i = 1; i <= n+1; i++) fa[i] = i;
    scanf("%s", (s+1));
    for (int i = 1; i <= m; i++) scanf("%d %d %c", &p[i].l, &p[i].r, &p[i].x);
    sort(p+1, p+m+1);
    ll ans = 0;
    for (int i = 1; i <= m; i++) {
        int j = find(p[i].l);
        for (;j <= p[i].r; j = find(j+1)) {
            if (s[j] < p[i].x) s[j]=p[i].x;
            fa[j]=find(j+1);
        }
    }
    for (int i = 1; i <= n; i++) ans += s[i];
    cout << ans << endl;
}
int main() {
#ifdef ACM_LOCAL
    freopen("input", "r", stdin);
    freopen("output", "w", stdout);
#endif
    ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);
    solve();
}

D. 监狱逃亡

对三行数据做一个前缀和sum1, sum2, sum3

然后他有两次向下走的机会,我们记为i和j

那么题意就转化为满足

s u m 1 [ i ] + s u m 2 [ j ] − s u m 2 [ i − 1 ] + s u m 3 [ n ] + s u m 3 [ j − 1 ] > = 0 sum1[i]+sum2[j]-sum2[i-1]+sum3[n]+sum3[j-1]>=0 sum1[i]+sum2[j]sum2[i1]+sum3[n]+sum3[j1]>=0

( i , j ) (i,j) (i,j)二元组对数

接下来就是经典的统计二元点对问题,我们枚举一个数,统计满足条件的个数。

用动态开点或离散化+树状数组都可以

#include <bits/stdc++.h>
using namespace std;
const int N = 5e5 + 10;
const int inf = 1e9;
const int mod = 1e9+7;
typedef long long ll;
typedef pair<int, int> pii;
int cnt, rt, sum[N*40], ls[N*40], rs[N*40];
void modify(int &now, ll l, ll r, ll pos) {
    if (!now) now = ++cnt;
    if (l == r) {
        sum[now]++;
        return;
    }
    ll mid = (l + r) >> 1;
    if (pos <= mid) modify(ls[now], l, mid, pos);
    else modify(rs[now], mid+1, r, pos);
    sum[now] = sum[ls[now]] + sum[rs[now]];
}
int query(int now, ll ql, ll qr, ll l, ll r) {
    if (!now) return 0;
    if (ql <= l && qr >= r) return sum[now];
    ll mid = (l + r) >> 1;
    int ans = 0;
    if (ql <= mid) ans += query(ls[now], ql, qr, l, mid);
    if (qr > mid) ans += query(rs[now], ql, qr, mid+1, r);
    return ans;
}
ll sum1[N], sum2[N], sum3[N];
void solve() {
    int n; cin >> n;
    for (int i = 1; i <= n; i++) {
        int x; cin >> x;
        sum1[i] = sum1[i-1] + x;
    }
    for (int i = 1; i <= n; i++) {
        int x; cin >> x;
        sum2[i] = sum2[i-1] + x;
    }
    for (int i = 1; i <= n; i++) {
        int x; cin >> x;
        sum3[i] = sum3[i-1] + x;
    }
    ll ans = 0;
    for (int i = 1; i <= n; i++) {
        modify(rt, 0, 2e15, sum3[n]+sum1[i]-sum2[i-1]+(ll)1e15);
        ans += query(rt, sum3[i-1]-sum2[i]+(ll)1e15, 2e15, 0, 2e15);
        ans %= mod;
    }
    cout << ans << endl;
}
int main() {
#ifdef ACM_LOCAL
    freopen("input", "r", stdin);
    freopen("output", "w", stdout);
#endif
    ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);
    solve();
}
练习赛142是一场编程竞赛,通常包含多个算法题目,涵盖如数组、字符串、链表、动态规划等常见数据结构算法知识点。针对这类比赛的解题思路和方法,可以从以下几个方面进行分析: ### 题目类型与解题策略 1. **数组相关问题** - 常见的题目包括查找数组中出现次数超过一半的数字、寻找缺失的数字、求解最大子数组和等。 - 解题方法包括使用哈希表统计频率、摩尔投票法(适用于多数元素问题)、双指针技巧或前缀和优化。 2. **链表操作** - 链表题目可能涉及反转链表、判断链表是否有环、找出两个链表的相交节点等。 - 例如,在找两个链表相交点的问题中,可以先计算各自长度,然后让长链表先走差值步数,再同步遍历比较节点地址[^3]。 3. **字符串处理** - 包括最长回文子串、无重复字符的最长子串等。 - 可采用滑动窗口、动态规划或中心扩展法等策略。 4. **树与图** - 树相关的题目可能涉及二叉树的遍历、路径和、最近公共祖先等问题。 - 图论问题可能需要使用深度优先搜索(DFS)、广度优先搜索(BFS)或拓扑排序等算法。 5. **动态规划** - 动态规划常用于解决背包问题、最长递增子序列、编辑距离等。 - 关键在于定义状态转移方程,并通过迭代或记忆化搜索进行求解。 6. **贪心算法** - 适用于区间调度、活动选择、硬币找零等问题。 - 贪心策略的核心在于每一步都做出局部最优选择。 ### 示例代码:摩尔投票法解决“多数元素”问题 ```python def majorityElement(nums): count = 0 candidate = None for num in nums: if count == 0: candidate = num count += (1 if num == candidate else -1) return candidate ``` 该算法时间复杂度为 O(n),空间复杂度为 O(1),非常适合处理大规模输入的数据集[^2]。 ### 提升解题能力的建议 - **刷题积累经验**:在 LeetCode、Codeforces、AtCoder 等平台上持续练习,熟悉各种题型。 - **学习经典算法**:掌握常见的算法模板,如二分查找、归并排序、快速选择等。 - **阅读官方题解与讨论区**:了解不同解法的优劣,尤其是最优解的时间复杂度分析。 - **模拟比赛训练**:定期参加在线编程比赛,提升实战能力和代码调试速度。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值