自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

永远鲜红の幼月的博客

累了,毁灭吧,躺平了

  • 博客(393)
  • 收藏
  • 关注

原创 机器学习入门实践--线性模型-多分类问题(python)

本文不涉及细节理论,只做必要性的介绍,侧重代码实现。线性模型-多分类问题的理论分析只有二分类是完全不够用的,因此需要其他的算法来解决多分类问题。例如识别数字0-9有10种情况。多分类问题模型是从二分类延申出来的。类比二分类即可学习。1.确定拟合函数h(x)从单样本开始对于一组样本{x,y=j}j∈[1,k]来说。对于x的预测结果可能有多个,如何确定最终的结果呢?判断概率P(y=j∣θ,x),那个概率更大,就预测那个值用hθ(x)表示就是:预测结果hθ(x)={P(y=1∣θ,x)P(y=2∣θ

2021-07-19 17:39:42 196 2

原创 机器学习入门实践--线性模型-分类算法-二分类问题(python)

本博客的理论细节在这里:机器学习入门-分类问题的拟合本博客侧重于实现,细节理论不再过多赘述,只简单介绍。逻辑回归理论分析逻辑回归就是一个二分类问题的分类算法,其根据得出的回归函数可以分为线性逻辑回归和非线性逻辑回归。1.确定拟合函数h(x)要拟合的函数有两个,分别是线性逻辑回归函数和非线性逻辑回归函数线性逻辑回归对于超平面来说,线性回归的模型是h(x)=kx+b这个k,x,b都可以是多维的,只需要满足kx线性相乘即可。其实,将x增加一个值为1的维度,k和b合成一个向量组,就可以写成矩阵相乘

2021-07-14 20:18:07 93 1

原创 机器学习入门实践--win10和Linux下的numpy安装

Window下的numpy安装根据<Python机器学习算法>要求.Python3.5window平台.使用pip安装安装python3.5网上随便找就有安装pipwin10下,直接在cmd中运行下面两行即可curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py # 下载安装脚本python get-pip.py # 运行安装脚本通过pip --version #查看是否安装成功使用pip安装n

2021-07-11 15:22:24 14

原创 VM虚拟机虚拟网卡设置和Linux网卡配置

VM虚拟机虚拟网卡设置和Linux网卡配置首先理清虚拟机中的配置和本地电脑之间的关系。这是三种虚拟机的网络链接模式,当使用vm虚拟机的时候,会选择一种模式作为网络连接的方法。这些模式分别在物理机上有对应的网络链接设置。这里主机模式和NAT模式分别在物理机上有着对应的虚拟网卡,这个虚拟网卡,可以通过虚拟机的虚拟网络编辑器来修改,也可以直接在物理机上通过更改网络适配器选项来修改。看物理机网络信息:通过在win下cmd中使用ipconfig命令,可以看到本地的无线或者有线网的ip,子网掩码,网关。桥

2021-07-11 13:31:06 70 1

原创 CentOS卸载安装yum和python

CentOS卸载安装yum参考博客:Centos7 python2.7和yum完全卸载及重装 卸载python和yum卸载python# rpm -qa|grep python|xargs rpm -ev --allmatches --nodeps ##强制删除已安装程序及其关联# whereis python |xargs rm -frv ##删除所有残余文件 ##xargs,允许你对输出执行其他某些命令# whereis python ##验证删除,返回无结果卸载yum# rp

2021-07-11 13:21:23 47

原创 机器学习应用--计算机视觉相关介绍

应用-计算机视觉前面我们了解了机器学习的常见应用之一,推荐系统。现在我们再来看一下另一个常见应用,计算机视觉。我们最为常见的一个功能,图片文字识别,语音转文字,不管是qq还是微信,都有这样的功能。它是如何实现的呢?图像识别首先提取出包含文字的图片。将文字切开。识别文字。滑动窗口如何从一张照片中识别出那部分属于文字。我们可以使用一种叫做滑动窗口的算法按照文字一般比例,使用等比例文字图片和等比例其他图片进行监督训练。按照等比例,对要识别的图片进行扫描,每确定一个位置,就输

2021-07-06 13:34:07 34

原创 大数据集下的学习方法

大数据下的机器学习现在机器学习算法,其实就是大量数据集下对数据集进行拟合。当数据量很大的时候,算法的效率必然会降低,如何处理大量的数据,是现在要考虑的问题。随机梯度下降回顾线性回归的梯度下降。hθ(x)=∑j=0nθjxj代价函数Cost(θ,(x(i),y(i)))=12(hθ(x(i))−y(i))2Jtrain(θ)=12m∑i−1m(hθ(x(i))−y(i))2=1m∑i−1mCost(θ,(x(i),y(i)))迭代运行梯度下降θj:=θj−α∂Jtrain(θ)∂θj对于每个j=0,

2021-07-06 13:31:10 20

原创 机器学习应用-推荐算法概述

推荐算法机器学习的一个常见应用。我们以推荐电影来作为一个例子。基于内容的推荐r(i,j):表示用户j对电影i有评分y(i,j):用户j对电影i的评分x(i):第i个电影存在的特征x列向量。θ(j):第j个用户对不同特征的评价列向量。对于用户j,电影i来说,预测的评分是:(θ(j))T(x(i)),含义为用户j的偏好∗电影包含的特征\begin{aligned}& r(i,j):表示用户j对电影i有评分\\& y^{(i,j)}:用户j对电影i的评分\\\\& x^{

2021-07-06 13:28:59 13

原创 无监督学习-异常评估

异常评估异常评估是针对之前的无监督学习得到的结果,若产生了区别于以构建好的阳性模型(即产生阴性结果。发出异常。引入样例假如一个二维数据集{x(1),x(2),...,x(m)},其分布样例如下所示新增一个训练集xtest,查看新增效果。\begin{aligned}& 假如一个二维数据集\{x^{(1)},x^{(2)},...,x^{(m)}\},其分布样例如下所示\\& 新增一个训练集x_{test},查看新增效果。\end{aligned}​假如一个二维数据集{x(1)

2021-07-06 13:27:49 32

原创 矩阵压缩降维

数据压缩在存储数据和使用数据的时候,过多的数据会造成空间上的占用和时间上的消耗。如果我们能够将数据压缩的更少一点,即可使用更少的空间和时间进行训练模型。例1:从2维到1维。当2维的点均匀的分布在某一条直线附近,即可使用该直线所在的1维值来表示之前的2维的值。当二维变量能够通过一条线表示出来的时候,我们就可以用一个变量来表示该二维变量了,即:x(i)∈R2−>z(i)∈Rx(i)表示第i个样本.z(i)表示第i个样本映射出来的1维结果。x^{(i)}\in\mathbb{R}^2\qqu

2021-07-06 13:26:11 50

原创 无监督学习

无监督学习监督学习,就是我们有确定的分类,传入参数为{x,y}这样的,输入x会输出确定的y。无监督学习,就是我们没有确定的分类,传入参数为{x,x,…,x}这样的,算法根据某些特征自动将其分类。K-means算法对于无监督学习的分类算法,最简单的是k-means算法了。该算法非常容易理解:k的含义为分成k个群。例如,我们要分成2个群。Step1:随机在样本中确定两个点A,B。Step2:将样本中所有的点,根据到这两个点之间的距离,分成两部分。Step3:求每一部分的中心位置。Step4

2021-07-06 13:18:25 11

原创 SVM以及核函数

对于监督学习分类算法,我们还有一个区别于逻辑回归的方法,即支持向量机SVM。SVM与逻辑回归的本质区别就是损失函数的区别。支持向量机SVM支持向量机(support vector machines,SVM)是一种二分类模型,基本模型是定义在特征空间上的间隔最大的线性分类器。简单来说,就是用来做分类用的,类比一下之前提到过的逻辑回归。它相较于之前的逻辑回归,使用了向量表示法,效果我们下面分析。逻辑回归回到之前我们的逻辑回归分类,我们将逻辑回归问题,转化为了概率问题,并且计算得出对应的概率函数hθ

2021-07-06 13:17:19 27

原创 模型的效果评判及模型的进一步优化问题

对于一个样本的学习,学习完后,使用另一个样本进行检测.针对检测结果的不同,模型函数的进一步优化方法问题汇总对于一个正则化的代价函数J(θ)=12m[∑i=1m(hθ(x(i))−y(i))2+λ∑j=1mθj2]J(\theta)=\frac{1}{2m}[\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})^2+\lambda\sum_{j=1}^m\theta_j^2]J(θ)=2m1​[i=1∑m​(hθ​(x(i))−y(i))2+λj=1∑m​θj2​]当我们发

2021-06-02 13:06:45 23

原创 机器学习入门-神经网络梯度下降

神经网络-梯度下降对于一个神经网络,我们通过传入参数,经过中间层的θ切换,最后输出hθ结果。下面是一个用makedown画的简易神经网络,感觉不是很好康,不过又懒的画图了,就这样吧。#mermaid-svg-65edGf52Det2pw3j .label{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family);fill:#333;color:#333}#mermaid-svg-65edGf52D

2021-06-02 11:42:12 9

原创 机器学习入门-分类问题的拟合

分类问题-梯度下降其实对于分类问题的本质还是选择合适的函数h(x),通过改变函数的系数Θ使其代价cost(i)之和J(Θ)最小.逻辑回归回归函数选择对于01分类问题,由于正常的线性回归方程的局限性,采用非线性模型模型函数:hθ(x)=g(θTx)θTx可以表示为多项式如:θ0+θ1x1+θ2x2+θ3x12x2+...其中g(z)=11+e−z所以hθ(x)=11+e−θTx模型函数:h_{\theta}(x)=g(\theta ^T x)\\\theta^T x可以表示为多项式如:\thet

2021-06-02 10:50:24 48

原创 Java中的装箱和拆箱

Java中的装箱和拆箱突然想起之前瞄过一眼的装箱和拆箱,想起概念不是特别清楚,于是探究一下。装箱和拆箱的概念众所周知,Java中万物皆对象(Object)。而装箱和拆箱就是处理基本数据类型和其对象之间的关系的操作。装箱:将基本类型转化成对应的Object类型。拆箱:将Object类型转化为对应的基本类型。Java中的8种基本数据类型和其对应的Object类型:byte(Byte),ch...

2020-04-17 09:42:43 195

原创 Ajax入门

1.Ajax入门1.1 Ajax简介Ajax,全称Asynchronous JavaScript and XML.即异步的JavaScript和XML.Ajax是一种无需重新加载整个网页的情况下,能够更新部分网页的技术.Ajax不是一种新的编程语言,而是一种用于创建更好更快以及交互性更强的Web应用程序的技术.1.2 Ajax包含的技术.Ajax是一个通过多个我们现有的技术的使用来...

2020-04-13 15:46:30 174

原创 SpringMVC入门

写在前面:SpringMVC是前端和后端交互的连接点.所以不可避免的需要一些前端的知识,因此我们会插入一些简单的前端知识.可以酌情阅读.大概步骤:SpringMVC的使用,然后通过注解再使用,然后重新学习一下重定向和转发.解决一下其他问题,比如乱码过滤.统一数据传递(JSON).前端的一些小知识:Ajax使用,优化一下我们的页面.整合一下我们的SSM,然后用到我们之前学过的,让我们的页...

2020-04-13 15:39:47 254 1

原创 Spring入门

1. Spring入门首先要了解一下什么是spring。通过一个简单的样例来分析入门。首先的自学必备,官方文档:https://docs.spring.io/spring/docs/5.2.4.RELEASE/spring-framework-reference/1.1 Spring简介spring框架是以interface21框架为基础,重新设计丰富的成果。spring就是整合了很多...

2020-04-13 15:22:23 158 1

原创 Mybatis的一些扩展操作

Mybatis的一些扩展操作1.日志入门的时候我们看过config中有settings的设置。其中就有日志有关的设置。我们可以通过设置这些日志来查看我们程序的详细运行流程<settings> <setting name="logImpl" value="STDOUT_LOGGING"/></settings>1.1日志工厂第三个字段就是描述的...

2020-04-13 11:59:29 137

原创 Mybatis的动态SQL

动态Sql还是开局贴上官方文档:https://mybatis.org/mybatis-3/zh/dynamic-sql.html动态 SQL 是 MyBatis 的强大特性之一。利用动态 SQL,可以减少根据条件拼接sql的痛苦。其实动态SQL说白了也就是SQL的字符串拼接.只不过不需要我们处理很多复杂的情况罢了(意思就是,这个动态SQL就是帮我们把字符串拼接,判断边界一类的,如果我们肯花...

2020-04-13 11:45:29 89

原创 Mybatis缓存

1.缓存官方文档:https://mybatis.org/mybatis-3/zh/sqlmap-xml.html#cache什么是缓存?遇事不决先百度。缓存是指可以进行高速数据交换的存储器。先于内存和CPU交换数据不过这属于计算机硬件了。我的理解就是用于暂时保存在内存中的数据,不用每次都去磁盘上读取。2.mybatis的缓存MyBatis 内置了一个强大的事务性查询缓存机制,它可以...

2020-04-13 11:32:57 90

原创 Mybatis复杂查询

1.前置环境1.1 mysql需要了解多表之间的关系。掌握一些简单的查询操作(嵌套查询等)。1.2 需要了解resultMap的操作。可以查看之前的:Mybatis-配置和映射文件博客也可以查看官方文档的Mybatis-映射文件章节:https://mybatis.org/mybatis-3/zh/sqlmap-xml.html#Result_Maps了解到两个子元素:assoc...

2020-04-13 11:26:03 671

原创 Mybatis的XML配置和映射文件

1.XML配置(config)Mybatis的配置文件包含了很多影响Mybatis行为的设置和属性信息。这些配置都是写在配置文件中的。映射的mapper会自动受到影响。主要包括:properties(属性)settings(设置)typeAliases(类型别名)typeHandlers(类型处理器)objectFactory(对象工厂)plugins(插件)environm...

2020-04-13 11:08:21 442

原创 Mybatis使用入门

Mybatis入门学习环境:JDK:13Mysql:5.5maven:3.5.2IDEA学习基础:JDBCMysqlJava基础Maven基础Junit基础1. Mybatis简介1.1 Mybatis简介Mybatis是一个持久层框架,减少了很多JDBC代码和手动获取结果集获取等代码的书写。支持sql存储和映射。通过xml或者注解来配置和映射各种接口,pojo...

2020-04-13 11:01:06 105

原创 大数据入门(持续更新...已咕咕)

小学期的选课.大数据入门Update:2020/4/12.持续更新…项目介绍我们用一个项目来入门大数据.项目来源:携程大数据项目实战(席老师主讲).携程网旅游信息.主要内容:获取数据,存储数据,管理数据,分析数据.为了完成以上的目标,我们都需要进行以下的准备:CentOS7:用于搭建服务器集群.(使用VMware虚拟机)Hadoop:(使用JDK)HIVE:(使用MySQL)...

2020-04-12 18:19:01 121 1

原创 JVM垃圾回收机制
原力计划

1. 内存简介垃圾回收是将被垃圾占用的空间释放掉,这个空间就是内存.可以防止内存泄漏.jvm运行时的内存管理分为两部分程序计数器,虚拟机栈,本地方法栈:具有隔离性,随着线程而创建和销毁.一个线程创建完分配入内存,线程结束后销毁内存,这些是确定的,一般不主动进行垃圾回收.堆区,方法区:随着对象的创建,实例化,而分配内存.是动态的.堆和方法区是公共的区域,变动较大,也是我们垃圾回收的主要...

2020-04-05 16:40:17 120 2

原创 Java容器系列--HashMap源码阅读
原力计划

HashMap版本:1.8随便new一个HashMap然后进入其中.文中不复制过多的源码,可以比较着看.1.结构分析1.1 变量:所有的变量都在这里了/** * defaultInitialCapacity * 默认初始容量(16), * 用来新建map容器时作为参考. */static final int DEFAULT_INITIAL_CAPACITY = 1 <...

2020-04-04 16:49:25 98 1

原创 CF-1188B-Count Pairs(思维+数学)

题目链接:https://codeforces.com/problemset/problem/1188/B题目大意:给出n个元素的数组A。求有多少对(i,j)满足(A[i]+A[j])*(A[i]^2+A[j]^2)%P=k。思路:很巧妙的思路,转化步骤:所以,我们只需要遍历数组,对于A[i]找是否存在A[j]满足上面的式子即可。ACCode:map<ll,ll&g...

2019-11-19 20:28:17 179

原创 CF-1252K-Addition Robot(线段树合并)

题目链接:https://codeforces.com/contest/1252/problem/K题目大意:给出一个AB串,给出一个算法。q次操作,1:反转,将区间[l,r]中的A变为B,B变为A。2.查询,每次给出查询区间[l,r],a,b计算最后a和b。思路:题意很明显可以转换成求区间[l,r]中有多少a和b。我们可以进行合并的时候维护。当时打比赛的时候,队友直接推出了合并公式,类似...

2019-11-18 20:26:47 117

原创 CF-1252H-Twin Buildings(扫描线+线段树)

题目链接:https://codeforces.com/contest/1252/problem/H题目大意:给出n个矩形小岛,每个小岛有两个属性:长和宽。我们要建两座相同的房子,要求房子的面积最大。这里相同的房子意思是边长对应相等。问最大的面积是多少。可以将一个岛分成两半一边一个。思路:将所有岛都放倒(长的边贴在x轴上)。然后找最大的重叠面积,即覆盖面积>=2的。最后和最大的单独岛...

2019-11-18 19:56:00 187

原创 CF-1252G-Performance Review(思维+线段树)

题目链接:https://codeforces.com/contest/1252/problem/G题目大意:给出n个人,每个人有自己的能力值,第一个人表示P。然后给出m年,每年都有新人进入公司。每次都会先踢出新人数量的老人,提出的人都是能力最后的几位。然后加入新人。前一年的新人在下一年就变成了可以被踢出的老人了。q次询问,询问不独立(这次询问对下次询问有影响)。每次将第x年的第i个人...

2019-11-18 19:38:08 171

原创 CF-1250C-Trip to Saint Petersburg(线段树)

题目链接:https://codeforces.com/contest/1250/problem/C题目大意:给出一个无限长度的数轴。数轴上的每个点的权值都为-k。其中有n个奖励区间。即选取一个区间后,如果该区间覆盖奖励区间,则区间之和会加上奖励区间的分数。求一个区间的最大分数,输出这个区间和覆盖的奖励区间。思路:由于奖励区间的范围比较小,所以很容易想到,枚举右端点r,找到左端点l,维护奖...

2019-11-18 19:24:03 235

原创 CF-Educational 76 A,B,C,D,E

Contest:https://codeforces.com/contest/1257目录A-Two Rival Students(暴力)B-Magic Stick(规律)C-Dominated Subarray(暴力)D-Yet Another Monster Killing Problem(思维+暴力)E-The Contest(思维+DP)A-Two Rival...

2019-11-18 19:10:53 270

原创 CF-1252C-Even Path(思维)

题目链接:https://codeforces.com/contest/1252/problem/C题目大意:给出一个n*n的矩阵A。A[i][j]=R[i]+C[j];给出n个元素的数组C和R。每次询问给出一个点对,问能否存在一条路径,满足路径上的所有点的值都为偶数,存在输出YES,否则输出NO。思路:我们用0表示偶数,1表示奇数,取一下同或,容易发现,可以联通的点对只会在一个矩形内。这...

2019-11-18 13:27:51 288

原创 CF-1163C2-Power Transmission (Hard Edition)(计算几何,map表示向量)

题目链接:https://codeforces.com/contest/1163/problem/C2题目大意:给出n个点(点不重复)。每个点之间都有一条线相连。重合的直线算一条。问有多少对直线相交。思路:一个常见的方法,map种存上斜率。然后判断斜率不相等的直线的个数。这道题因为重合的直线算一条。所以我又开了一个一般式的直线去重。最后n*n枚举直线,log(n)查询即可。个人感觉多了...

2019-11-14 18:30:00 87

原创 CF-1185F-Two Pizzas(思维+二进制暴力,枚举)(SOS DP)

题目链接:https://codeforces.com/contest/1185/problem/F题目大意:给出n个人,m个蛋糕。每个人有自己喜欢的口味(多种).每个蛋糕有自己的口味(多种).每个蛋糕有自己的价格c。当一个人可以吃到所有满足自己口味的食物时,会感到开心(从不同的蛋糕中凑够也算)。问满足最多的人开心,的最少花费的组合时什么。思路:由于口味最多只有9种。所以我们很容易的用一个...

2019-11-13 18:35:18 134

原创 CF-1185C2-Exam in BerSU (hard version) (思维+贪心暴力)

题目链接:https://codeforces.com/problemset/problem/1185/C2题目大意:给出一个包含n个元素的数组A,A[i]表示第i个人做完试卷需要多久。一场考试持续m分钟。问第i个人想要写完试卷,前i-1个人最少多少个需要放弃考试。思路:其实我过的还是比较迷的。。因为没什么好方法就想着暴力试试。。就过了。。200ms+。。好了,下面思路(可能不是很好由...

2019-11-13 17:01:42 124

原创 CF-1172A-Nauuo and Cards(思维+规律)

题目链接:https://codeforces.com/problemset/problem/1172/A题目大意:给出手牌A,牌库B(1到n和n个0)。每次顺时针旋转(牌库中的第一个牌放入手牌,手牌中随便一个牌放入牌库末尾)。问多少次操作后,可以让所有牌库中的所有牌单调增。求最少次数。思路:首先很明显有一种情况就是将所有牌库中的牌都放入手牌,然后再都依次放入牌库。需要次数为Pos[牌库中...

2019-11-13 13:39:10 435

原创 CF-1185D-Extra Element(二分,暴力)

题目链接:https://codeforces.com/problemset/problem/1185/D题目大意:给出一个数组A,判断里面的数删掉一个是否能够组成一个等差数列。如果可以,输出删除的那个数的位置。否则输出-1.思路:将数组排一下序,然后将所有的公差都放入map中。然后枚举每个元素,判断是否可以删除。特判一下第一个和最后一个。ACCode:#include<s...

2019-11-12 21:48:58 119

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除