1、Dify是什么?
Dify是一个开源的LLM应用开发平台,它通过直观的可视化界面,帮助开发者快速构建和部署AI应用,支持包括模型管理、知识库、工作流编排等全方位功能,你可以把它理解为一个类似于扣子的"AI应用的乐高积木系统"。
2、安装步骤
在开始安装之前,我们需要确保系统满足以下基本要求:
- CPU至少2核心
- 内存至少4GB(建议8GB以上)
- 硬盘空间至少20GB(为了后续扩展)
- 操作系统支持:Windows、macOS或Linux
1. dify的安装步骤
首先,让我们来安装dify。虽然有多种部署方式,但我建议使用Docker方式部署,这样最简单稳妥也最不容易出错:
- 下载代码:
git clone https://github.com/langgenius/dify.git
cd dify/docker
- 配置环境:
cp .env.example .env
- 启动服务:
如果你使用的是Docker Compose V2:
docker compose up -d
如果是V1版本:
docker-compose up -d
安装完成后,通过以下命令检查服务状态:
docker compose ps
检查要特别关注以下几个关键容器的状态:
- docker-api-1:API服务
- docker-web-1:Web界面
- docker-worker-1:后台任务处理
- docker-db-1:数据库
- docker-redis-1:缓存服务
- docker-nginx-1:反向代理
所有容器都应该显示"Up"状态。然后我们可以通过浏览器访问:
http://localhost/install
2. deepseek-r1的部署
接下来是安装deepseek-r1。这个过程相对简单,但需要注意一些细节:
- 安装Ollama:Windows用户:从官网下载安装包.Linux用户:使用curl安装
curl -fsSL https://ollama.ai/install.sh | bash
- macOS用户:使用Homebrew安装
brew install ollama
安装完成后,打开终端验证:
ollama -v
- 下载deepseek-r1模型:基础版本(推荐新手使用):
ollama run deepseek-r1:7b
高性能版本(需要较好的硬件配置):
ollama run deepseek-r1:14b
下载过程可能需要一段时间,取决于你的网络速度。7b版本大约需要4.7GB空间,14b版本需要约9GB空间。
3. 系统联调与配置
现在两个系统都装好了,需要进行整合配置:
dify基础配置:打开.env文件,配置以下关键参数:
CONSOLE_URL=http://localhost
SERVICE_API_URL=http://localhost
UPLOAD_FILE_SIZE_LIMIT=50 # 文件上传限制,单位MB
UPLOAD_FILE_MIME_TYPES=.pdf,.doc,.docx,.txt # 允许上传的文件类型在dify控制台中添加模型配置:访问http://localhost,完成注册,登录后进入Settings → Model Provider添加Local Model配置,这里选择ollama就可以了
选择API格式为Ollama,相关的配置如下,因为我是使用的docker来进行部署的,访问部宿主机的地址记得使用host.docker.internal这个地址,你也可以使用你局域网电脑中的网址!
测试整合,来创建一个简单的聊天会话应用创建一个新的应用
选择刚配置的deepseek-r1模型,我发送测试消息发送测试消息验证响应
3、 实战应用案例
现在来分享一些实际应用场景和具体的操作步骤。
智能文档案例
什么是知识库?知识库就像是一个智能的企业大脑,你可以往里面放入公司的各种资料,比如产品手册、培训文档、客户案例等。当有人需要找什么信息时,不用再到处问同事或者翻文件夹,直接在知识库里搜索就能快速找到答案。它最大的特点是可以帮你管理和查找各种资料,让公司的知识经验能够保存下来,新员工也能更快上手工作。
创建知识库:进入dify控制台,选择"Dataset"→"Create New",上传文档文件,这里的文档支持多种格式,也支持从notion当中导入,还可以同步外部的站点
设置索引参数和检索规则,这里我推荐使用 nomic-embed-text:latest作为你的文件嵌入模型,也是使用 ollama来拉取和运行,pull一下就可以了,完全不用操心其他的操作!
ollama pull nomic-embed-text
完成上面的步骤之后,我们就可以导入自己需要检索的文档。在后面的对话或者工作流中直接引用
工作流案例
配置工作流:创建新的Workflow,我这里直接选择一个已有的工作流: 文档总结工作流
然后添加文档处理节点,这里只需把之前的GPT3.5换成DeepSeek-R1就可以了
操作步骤如下:
当然你也可以自定义设置提示词模板:
任务:分析以下文档并提取关键信息
文档内容:{{context}}
要求:
1. 提取主要观点
2. 总结关键数据
3. 生成行动建议之之后击运行输入要总结的内容
最后的运行结果是:
最后
玩Dify的工作流本身就像搭积木一样,用它来搭建各种有趣的 AI 应用。比如做一个智能客服,帮你自动回答客户的问题;或者做个私人助理,帮你整理文档、写邮件、做会议记录;甚至可以做个创意助手,帮你写文案、做营销策划、设计广告语。
你不需要写复杂的代码,只要像拖拽积木一样,把不同的功能模块组合在一起,就能做出你想要的应用。它就像是给你一套 AI 魔法工具,让你能轻松地把脑子里的想法变成现实。
而且扣子能做的,它统统都能做!
因为deepseek已经把开源的威力充分的展示给大家看了!相信随着AI技术的快速发展,dify和deepseek-r1的结合使用将会迎来更多可能性!
我的DeepSeek部署资料已打包好(自取↓)
https://pan.quark.cn/s/7e0fa45596e4
但如果你想知道这个工具为什么能“听懂人话”、写出代码 甚至预测市场趋势——答案就藏在大模型技术里!
❗️为什么你必须了解大模型?
1️⃣ 薪资爆炸:应届大模型工程师年薪40万起步,懂“Prompt调教”的带货主播收入翻3倍
2️⃣ 行业重构:金融、医疗、教育正在被AI重塑,不用大模型的公司3年内必淘汰
3️⃣ 零门槛上车:90%的进阶技巧不需写代码!会说话就能指挥AI
(附深度求索BOSS招聘信息)
⚠️警惕:当同事用DeepSeek 3小时干完你3天的工作时,淘汰倒计时就开始了。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?老师啊,我自学没有方向怎么办?老师,这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!当然这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!