AI大模型知识点:一文讲清楚MCP、RAG、Agent概念和关系

一、MCP、RAG、Agent 概念与关系

1、RAG (检索增强生成)

定义: RAG 是一种融合信息检索与文本生成的人工智能技术框架,它打破传统大语言模型仅依赖预训练参数生成内容的局限,通过动态检索外部知识库中的相关信息,将这些精准数据作为生成依据,从而输出更具针对性、准确性和可靠性的文本回应。

功能: 在接收到用户输入后,RAG 系统首先启动检索模块,基于关键词匹配、语义理解等技术,从结构化或非结构化的知识库(如文档库、数据库、行业报告等)中快速筛选出高相关性的文本片段;

随后,这些检索到的信息被整合到文本生成模块,作为补充知识和参考依据,引导模型结合自身语言理解与生成能力,输出贴合需求、富含有效信息的内容。

主要优势: RAG 最显著的优势在于大幅降低 AI 模型的 “幻觉” 问题。传统模型生成内容时,仅依靠预训练阶段积累的知识,可能因记忆偏差或知识盲区编造错误信息;

而 RAG 通过实时检索外部权威知识,让 AI 回应建立在事实信息的坚实基础上,确保输出内容有据可依、逻辑自洽,尤其适用于对准确性要求极高的场景,如医疗咨询、法律解答、企业知识问答等。

img

知识库: 作为 RAG 系统的 “信息仓库”,用于存储海量结构化或非结构化数据,涵盖行业报告、学术论文、产品手册、历史问答记录等各类文档。这些数据既是 RAG 输出内容的知识源泉,也是抑制模型 “幻觉” 的关键依据。

为了提升检索效率,知识库中的数据通常会经过清洗、切分、标注等预处理,以便检索组件快速定位相关信息。

检索组件: 该组件是 RAG 系统的 “信息筛选器”,由嵌入模型和向量数据库两部分协同工作。

嵌入模型通过深度学习算法,将知识库中的文档和用户输入转化为低维稠密的向量表示(即嵌入向量),这些向量包含文本语义信息,向量间的距离反映文本相关性。向量数据库则负责存储这些向量,并利用高效的相似性搜索算法(如 FAISS、Milvus),快速检索出与用户查询语义最接近的文档片段。

通过这种方式,检索组件能够在海量数据中精准定位有效信息,为生成模块提供高质量的参考资料。

生成模型: 以预训练语言模型(如 GPT 系列、LLaMA 等)为基础,充当 RAG 系统的 “内容创作者”。

它接收检索组件返回的相关文档信息,并结合用户原始提问,利用自身强大的语言理解与生成能力,将检索到的知识与语义逻辑进行融合,最终生成连贯、准确且符合用户需求的文本回应。

生成模型的性能直接影响 RAG 输出内容的质量,通过微调或优化参数,可以进一步提升其在特定场景下的生成效果。

2、Agent(智能体)

定义: 一种能够感知、决策和行动以实现特定目标的自主 AI 系统。

功能: 基于观察和目标在环境中采取行动。

img

核心组件:

  • 感知模块:用于感知环境状态。

  • 推理/决策模块:基于感知信息进行推理和决策。

  • 工具使用能力:调用外部工具和资源以完成任务。

例子:

  • 客户服务智能体

  • 数据分析智能体

  • 复杂任务处理智能体

3、MCP(模型上下文协议)

定义: 一种连接 AI 助手与外部系统的开放标准,使模型能够获取上下文信息。

功能: 实现 AI 模型与外部数据源和工具的标准化通信。

主要优势: 提供统一接口,简化 AI与各类系统的集成。

img

组成部分:

  • 客户端-服务器架构:支持多个客户端与服务器之间的通信。

  • 标准化通信协议:确保不同系统之间的兼容性。

  • 工具调用接口:允许 AI模型调用外部工具和资源。

二、核心概念之间的关系

1、RAG ← Agent 之间关系
  • RAG 作为 Agent 的知识组件。

  • RAG 常作为智能体(Agent)内的知识组件,为决策提供事实基础。

  • Agent 利用 RAG 访问相关信息,从而做出更明智的决策。

当 RAG 与 Agent 结合使用(即 Agentiç RAG)时,Agent 的决策能力和 RAG 的知识能力相互增强,提升整体性能。

2、Agent ← MCP 之间关系
  • MCP 作为 Agent 的外部交互接口。

  • MCP 为 Agent 提供与外部系统交互的标准化接口。

  • Agent 可以通过 MCP 调用工具、获取数据,从而扩展其行动能力。

  • MCP 简化了 Agent 与多种外部服务的集成,显著提高了开发效率

3、MCP ← RAG 之间关系
  • MCP 作为 RAG 的外部知识通道。

  • MCP 可以作为 RAG 系统获取外部知识的通道。

  • 通过 MCP 连接的数据源可以丰富 RAG 的知识库。

  • MCP 标准化了 RAG 系统访问各类数据仓库的方式,确保数据的一致性和可访问性。

4、实际实现

在一个完整的 AI 系统中,这些元素协同工作,实现高效、智能的任务处理:

  • Agent 通过 MCP 与外部系统建立连接:Agent 利用 MCP 提供的标准化接口,与外部数据源和工具进行交互。

  • Agent 使用 RAG 检索并整合相关知识:Agent 通过 RAG 访问知识库,检索与任务相关的事实信息,为决策提供支持。

  • 系统结合决策能力和事实信息处理复杂任务:Agent 将检索到的知识与自身的决策能力相结合,处理复杂的任务,生成准确、可靠的回应。

这种整合方法创造出比任何单一组件都更强大、更可靠、更适应性强的 AI 系统,能够理解上下文,检索相关信息,并采取适当行动完成任务。

三、生活案例

  • RAG 像一个认真的学生: 想象一个学生写论文。遇到不懂的内容,他不会瞎编,而是去图书馆查找资料,找到相关书籍,然后基于这些可靠信息来写论文。RAG 就是 AI的’查资料“能力。

  • Agent 像一个私人助理: 假设你告诉助理:"帮我安排下周去北京的商务旅行。"一个好助理会自己决定需要预订机票、酒店、安排会议时间等,并自己完成这些任务。Agent就是 AI 的这种"理解目标并自主行动”的能力。

  • MCP 像一个万能转接头: 你可能有过这种经历:带着国内的充电器去国外,发现插不进插座。这时你需要一个转接头。MCP 就是 AI 的“转接头”,让 AI 能够连接和使用各种外部工具和数据源。

1、想想你自己如何完成一项复杂任务
  • 你需要知识(类似 RAG): 在做任何事情之前,你都需要获取相关的信息和知识。

  • 你需要决策能力(类似 Agent): 有了知识后,你需要根据这些信息做出决策和规划。

  • 你需要使用工具的能力(类似 MCP): 最后,你需要使用各种工具来执行这些决策。

例如,烹饪一道新菜:你会查菜谱(RAG),根据实际情况调整做法(Agent),使用各种厨具(通过 MCP 连接)。

2、启发思考
  • 如果 AI 只有 RAG 能力(只会查资料),但不会思考和使用工具: 它可以回答一些基于事实的问题,但无法完成复杂的任务。例如,它可以告诉你昨天的股市情况,但无法帮你制定投资策略。

  • 如果 AI 只能思考决策(Agent),但没有可靠的信息来源(RAG): 它可能会做出一些基于假设的决策,但这些决策可能不准确。例如,它可以帮你策划旅行,但可能会忽略一些重要的细节。

  • 没有标准接口(MCP),每个工具都需要特殊连接方式: 这会给 AI使用工具带来巨大的挑战,增加开发和维护的复杂性。例如,每次需要使用个新的工具,都需要重新编写代码来适配。

你能想象这三种能力完美结合的 AI 能帮你完成什么任务吗?

3、你有一个超级智能助手。这个助手有三种超能力
  • 超级记忆(RAG): 不管你问什么,它都能迅速查找到准确的信息,而不是凭空想象或编造答案。比如你问“昨天的股市怎么样”,它会立刻找出真实数据告诉你。

  • 独立思考(Agent): 你只需告诉它你想要什么结果,它就能自己思考并决定如何一步步实现。比如你说"帮我策划一次旅行",它会自动考虑预算、时间、景点等因素并给出完整计划。

  • 万能连接器(MCP): 它能够使用各种外部工具和系统。需要发邮件?预订机票?计算复杂数学问题?它都能连接到适当的工具来完成。

当这三种能力结合在一起,你就拥有了一个既知识丰富,又能独立思考,还能使用各种工具的全能助手。 这就是现代 AI 系统通过结合 RAG、Agent 和MCP 所迫求的目标。

四、MCP、RAG、Agent 架构设计图解

第一、9张架构设计概念图解!

img

img

img

img

img

img

img

img

img

第二、3张架构设计关系图解

img

img

img

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值