6.paddlepaddle之自定义模型构建使用

本文详细介绍了如何使用PaddlePaddle构建自定义模型,从简单的全连接层模型开始,逐步增加对批量数据的支持,再到添加卷积层。通过实例展示了模型的结构配置、训练过程以及参数调整,强调了模型构造的有效性和动手实践的重要性。
摘要由CSDN通过智能技术生成

前言

本文所依赖环境如下,主要还是paddlepaddle和cifar数据集,cifar数据集在上一章讲过,就不重复了:

paddlepaddle(2.3.1)
cifar数据集

1.简单的自定义模型

话不多说,先放一个适配cifar数据集,最简单的自定义模型:

class Net(paddle.nn.Layer):
    def __init__(self):
        super(Net, self).__init__()
        self.fc = nn.Sequential(
            nn.Linear(3072, 10),
            nn.Softmax())

    def forward(self, image, label):
        image = paddle.reshape(image, (1, -1))
        return self.fc(image), label

可以看到这就是一个fc全连接层+一个softmax的结果。

全连接层的in配置的3072是因为cifar的图片大小是32*32*3,这里我们单个图片对其reshape到一维就是3072的长度。

接下来,先配置所需要的cifar数据集,代码如下:

import paddle
from paddle.vision.transforms import Normalize,Compose,Transpose,Resize
transform = Normalize(mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], dat
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kakaccys

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值