AB实验专题
AB实验功能是策略产品经理需要掌握的一项基本能力,也是互联网产品效果评估的最重要和最常见的方法。
在战略产品管理中,AB实验功能扮演着至关重要的角色。这项技能使产品经理能够设计和执行实验,以验证和比较不同的产品策略和功能。通过将用户群体随机分为两个或多个组,产品经理可以在其中一组应用变体A,而另一组应用变体B(或其他变体)。这样,他们可以对比不同变体之间的绩效和用户反馈,以帮助做出更明智的决策。
AB实验功能的核心目的是通过对比不同变体的表现,了解它们对用户行为、转化率、用户满意度等指标的影响。通过精心设计实验流程和采集关键数据,产品经理可以获取可靠的结果和见解,用于指导产品策略和改进决策。这种方法不仅可以帮助产品团队验证新功能的有效性,还可以优化现有功能以提升整体用户体验。
然而,在运用AB实验功能时,产品经理需要注意一些关键要点。首先,实验设计应该尽可能排除潜在的偏见和干扰因素,确保实验结果的可靠性。其次,样本规模要足够大,以获得统计显著性和代表性。此外,产品经理还应关注实验期间的用户体验和情感反馈,以便全面了解变体对用户的影响。
综上所述,AB实验功能是策略产品经理必须掌握的关键能力之一。通过运用AB实验,产品经理能够准确评估和改进产品的效果,并基于数据驱动的决策来推动产品的成功发展。这一方法的灵活性和普适性使其成为互联网产品评估中不可或缺的工具。
举个例子来说,如果你负责淘宝的策略产品,Leader让你去优化购物车的转化率,你苦思冥想了好几天好不容易想出来一个方案:设计购物车的页面跟着手机壳的颜色变化而变化。那你要怎样才能知道这个策略是好是坏呢?这个时候就要用到AB实验方法。
什么是AB实验?
AB实验是指为了验证某一个产品能力或者策略的效果好坏,将产品的用户随机分成两部分,分别是实验组和对照组,对比两个组的用户表现而进行的实验。AB测试其实来源于假设检验,我们现在有两个随机均匀的样本组A、B,对其中一个组A做出某种改动,实验结束后分析两组用户行为数据,通过显著性检验,判断这个改动对于我们所关注的核心指标是否有显著的影响。
在这个实验中,我们的假设检验如下:
原假设H0:这项改动不会对核心指标有显著的影响
备选假设H1:这项改动会对核心指标有显著影响
如果我们在做完实验之后,通过显著性检验发现P值足够小,我们则推翻原假设,证明这项改动会对我们所关注的核心指标产生显著影响,否则接受原假设,认为该改动未产生显著影响。如果用一句话来概括的话,AB测试其实就是随机均匀样本组的对照实验。这个就是AB测试的原理。
AB测试的一般流程
AB测试会涉及到产品、开发、数据部门,流程较长,环节较复杂,对于很多还没有真正工作,或者说没有切实接触过AB测试的同学来说,实施起来可能有一定的难度,但是一般来说主要有以下几个步骤:
1、一般在开始实验之前,我们首先需要和相关的产品或者项目经理确定这个实验所要验证的改动点是什么。
2、在确认改动点之后,数据分析师需要设计实验中所需要去观测的一些核心指标,比如点击率、转化率等。
3、确定完核心指标之后,下一步就是计算实验所需的最少样本流量,实验样本越大,我们的结果越可信,但是对我们用户的不良影响就越大。所以我们需要计算能够显著地证明我们的策略有效的最少样本量。
4、然后还要结合目前的日均活跃的用户量,计算实验持续的时间周期。
*避免新奇效应,用户因为新鲜感而表现出的不可持续的行为
5、在计算完所需样本量之后,就要设计流量分割策略,根据实验需要对样本流量进行分流分层,保证样本的随机和均匀分布,避免出现辛普森悖论。
6、以上准备工作就绪,就需要和PM以及开发同学确认可以开始实验。一般在上线正式实验之前,会通过小流量去看一段时间的灰度实验。这个灰度实验的目的就是为了验证我们这个改动并不会造成什么特别极端的影响。
7、在灰度之后就会正式发版,等到实验周期结束,我们对实验的结果进行显著性检验。
互联网产品的AB实验应用场景主要有三种:
- 客户端的界面调整实验:主要是使用不同的策略对客户端的UI布局进行调整。例如,验证抖音的点赞按钮在屏幕右侧或者在底部两种策略,哪种的用户的点赞转化率最高。