最小生成树(poj1797)路径最小值最大

本文探讨了如何使用Kruskal算法构建最小生成树,并解释了如何通过删除环中最大值来保持树的结构。算法的核心是贪心策略,即按边的权值排序,优先选择较小的边,确保最终形成的树具有最小的路径和。同时,文章指出,当遇到环时,删除环中权值最大的边不影响最小生成树的整体结构,这一思想源于数学归纳法。
摘要由CSDN通过智能技术生成

                                                           路径最小值最大

kruskal 算法是基于贪心。--最小平均树

        怎么个贪心:    首先生成树不能有环,那我们给最小生成树添加一条边(随机)使得其变成环,模拟初步的图的环境,观察有什么规律可以得到。

        

        假如之前是1 2 我们添加3,那么可以删除 3.

        假如之前是1 3 我们添加2,那么可以删除 3.

        假如之前是2 3 我们添加1,那么可以删除 3.

删除环中最大的那个。那么我们的最小生成树还在。

应该有人会想,这个删除操作影响其余的树结构吗??

        答案:不会。

这样我们先将权值小的(排序)让其生成最小生成树,反正权值最大会被删(在某环内)。

而且只需要生成到n-1边就结束了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值