题目描述
某校大门外长度为i的马路上有一排树,每两棵相邻的树之间的间隔都是1米。我们可以把马路看成一个数轴,马路的一端在数轴 0 的位置,另一端在 i 的位置;数轴上的每个整数点,即 0,1,2,…,i,都种有一棵树。
由于马路上有一些区域要用来建地铁。这些区域用它们在数轴上的起始点和终止点表示。已知任一区域的起始点和终止点的坐标都是整数,区域之间可能有重合的部分。现在要把这些区域中的树(包括区域端点处的两棵树)移走。你的任务是计算将这些树都移走后,马路上还有多少棵树。
输入格式
第一行有两个整数,分别表示马路的长度 i 和区域的数目 m。
接下来 m 行,每行两个整数 u,v,表示一个区域的起始点和终止点的坐标。
输出格式
输出一行一个整数,表示将这些树都移走后,马路上剩余的树木数量。
输入输出样例
输入 #1
500 3 150 300 100 200 470 471
输出 #1
298
说明/提示
【数据范围】
- 对于 20% 的数据,保证区域之间没有重合的部分。
- 对于 100% 的数据,保证 1≤l≤104,1≤m≤100,0≤u≤v≤l。
【题目来源】
NOIP 2005 普及组第二题
题目传送门
解法
哎~这道题真是要那么简单就那么简单呐......
咳咳咳~回到正题,本题目的解法很不难,只要将修地铁的区间标记一下,后面慢慢算就可以了,主要还是样例太水。
但是如果我们把i加到1000007,m加到100005,那么朴素的方法还能解决么?是不是解决不了了?那我们怎么把这一个代码优化呢?区间的标记,聪明的你们都想到了什么?这道题能用什么方法解决?对了,就是差分,(如果你连差分都没学过,不妨看看这篇文章"差分前缀和")这样就可以把第二重循环也就是用于标记修地铁区间的循环给去掉,这样就很省事了,只要后面查看时前面的和大于零,那么这个区间就要用来修地铁(切记!一定别漏了后面再减回去!)
代码
差分优化版的作者没啥时间,就不写了,会差分的人一定写得出来,这里只给出普通版:
#include<bits/stdc++.h>
using namespace std;
int a[10000001],sum;
int main(){
int n,x,y,z;
cin>>n>>x;
for(int i=0;i<=x-1;i++){
cin>>y>>z;
for(int j=y;j<=z;j++){
a[j]=1;
}
}
for(int i=0;i<=n;i++){
if(a[i]==0){
sum++;
}
}
cout<<sum;
}
很简单的一道题,真怀疑NOIP举办方为什么会将这道题给普及组的人做