Floyd算法是什么?
Floyd算法(弗洛伊德算法)是一种求最短路的方法,别急着叫难,实际上这一个算法非常简单,虽然它用的是DP思想。好了,现在开始介绍它的原理。
Floyd的原理
啊说到Floyd算法,那么得讲讲最短路,最短路,是指从一个图中一个点到别的点的最短路径,有人就会问:“哎,这个图有距离吗?”问这种问题的人就是不懂图的人,一条边的权值,就是这一条边的长度,根据出发点划分,最短路可以分成单源最短路和多源最短路。
- 单源最短路:指求从一个点出发,到别的点的最短路径,常用Dijstra算法(不可以处理负权边)
- 多源最短路:指求从多个点出发,到别的点的最短路径,常用Floyd算法(可以处理负权边,但不能处理负权环)
现在是不是该讲讲Floyd算法了呢,Floyd算法,是从x点出发,到y点终止,只有两种可能,要么这两者之间有路,要么通过一个中转点k到达点y,所以Floyd算法暴力枚举x、y、k,当经过中转点k到达点j更短,那么更新他俩的最短长度,不必担心点k到点j或点i到点k是不是为最短路,点i到k和点k到j的最短距离也是被更新过的,所以最后,邻接矩阵中f[x][y]就表示x到y的最短路径了,简不简单?
代码
核心代码在这里,至于别的代码,随题目的不同可以变换,就不写了
\\f中,两个不连通(无边相连)的点初始值为极大值,一个点到自己距离为一,如f[0][0]=1
for(int i=1;i<=n;i++){\\枚举起点
for(int j=1;j<=n;j++){\\枚举终点
for(int k=1;k<=n;k++){\\枚举中转点
f[i][j]=f[j][i]=min(f[i][j],f[i][k]+f[k][j]);\\f是邻接矩阵
}
}
}