罗里吧嗦的前沿
诶呀,时光荏苒,日月如梭,一晃神的功夫,从高贵的大学生转变研究牲,一转眼又从研究牲为社畜了,作为人类的属性不断地降低,ε=(´ο`*)))。
原本秋招的时候信心满满,我要搞算法,我要搞nlp,搞不了算法我也做游戏,我要进大厂,在22年实习期间感觉风头就不对,最初找了一个上海的初创做医疗图像,offer都发了,’结果上海封了,后来找了一个北京中厂做数挖,同样口头offer,学生证身份证照片都发过去了,结果北京也封了了,再后来逼得实在没办法了,我只能在没疫情的地方找吧,幸好杭州啥事没有,找了一个数开,是移动外包的外包。但是干的还是挺开心的(因为不加班,工作技术栈相符合,还学到了hivesql,领导也很nice,没留还是对领导有点小愧疚(*^▽^*))。
后来实习到期开学,顺便经历了秋招全失败(为啥23届秋招这么难┭┮﹏┭┮),放弃了幻想,放弃了大厂梦,但是还是想搞数据,或者游戏。其中最爽的肯定就是游戏数据分析啦,但是游戏数据分析这个岗,大厂才有,但是23年形式emmmm,真的不吹,笔试题个人作品啥的加一起写了不下5w字的游戏数据分析,游戏拆分报告,运营策略啥的,都快赶上一本小书了,确实可惜,真没一家游戏公司要我,聊的最好的九鼎和星辉也因为面试没说到点子上失败了。
ε=(´ο`*)))唉,其他的要么就是线下面试,要么就马上入职,没毕业的我实在去不起啊,只能忍痛放弃(后来感觉这个决定是对的,我们这届研究生50多人,正常毕业的才20多,一半因为大论文,小论文课业问题没法正常准时毕业,我一直平稳落地,论文外审还拿了双a,有点小爽)
后面没办法嘛,要工作的吗,总不能真的研究生毕业无工作出道成为Vtuber吧(我都有自己的皮和live2d哦,live2d还是我自己绑的),千挑万选找到目前工作的海外互金公司,base深圳,title是风控部的数据分析师,也算是万幸吧,还能留在数据这个领域,就是行业从游戏跨度到金融,还是海外互金,真是我万万没想到的了。
墨迹之后的正文
新人入职之后,因为实在不太了解海外互金是个什么玩法,上网查了一下,好家伙,校园贷嘛这不是,看了一下公司的业务,好家伙还是714高炮玩法,开始上班心都是突突的,害怕啊,尽管公司的海外牌照合法合规,但是我深受良心的谴责,但是后来看到了信也科技,度小满,美团三快之流的一些消息,发现只要公司业务合法合规,啥叫良心诶,赚钱嘛,不寒碜(这可能就是成长的代价吧)。而且我还是数据技术岗,主抓技术(罪恶感还略低一筹),辅助业务侧执行,当然对业务也要全面透彻理解啦。
在上班过程中一直学习,入职两个月了,也基本把公式的业务工作流程搞清楚了,总结成了一份思维导图,也算是做一个短期工作总结吧,记录一下我的学习进度。我把一些具体的代码地址都隐藏了,以后如果有机会的话可以把其中一部分纯技术代码输出一下,做一个技术分享,当然对于大佬来说确实很简陋,只能说是给刚入行,或者想要入行的同学们一个小指南吧
无事の日常
每天清早第一句,先给自己打个气,来公司还没把电脑支上的第一件事就是看实时日报,看看昨天的各个客群的首逾情况,通过情况啥的,这决定这我是慢慢把电脑拿出来,慢慢的看报表,还是急急的把电脑拿出来,急急的看报表。后来看报表,规则每条每条的对实在费事,我就编了一个规则异常触发报警的小功能,每天运行一下看看有没有啥规则异常波动的。这样每天又多出来小二十分钟可以摸鱼美滋滋。
看完报表在看看各个客群的贷后啥情况,要是贷后变差了,还得找一下变差的原因,是运营那边有划水了,在莫名其妙的渠道投放了一些莫名其妙的广告,来了一群低分段刁民,造成了贷后变差,还是说目前用的这个模型年久失修,旧时代的船上不了新时代的海了,要是前者直接把锅丢给运营,(当然我目前还在实习期,没有直接跟运营对接),如果是后者的话,说明要整点新数据(整点薯条)做个新模型了。
要是老爷保号,一切平安无事,通过率维稳,贷后正常,趋势不变坏。那就是风平浪静,手上没活的情况下,可以摸摸鱼,看看技术博客,跟群里老哥吹吹水,摸到11点就可以点点外卖,继续摸摸鱼,解决一下任务探索中的小难点啥的。
中午吃完了饭,打会osu!锻炼锻炼手眼协调能力,防止老年痴呆,当然等大家都睡了,也跟着眯一会,磨蹭磨蹭到2点开始下午的工作了。
下午了,看看礼拜几该开什么会了,和pm,运营,贷后的大佬萌对一对需求,看看需要做点什么调整,‘诶呀,最近贷后怎么变差了呀’,‘通过率给高点呀,我运营成本受不了’,都是常态,这时候就动一动策略额度,看看都咋改改,能给点动静出来。
开完会又该干活了,看看数据,老客户最近变差了,新白名单起量了,跟领导商讨一下可以出一版模型嘛,迭代一下嘛,再看看邮件,有没有测试的需求,需要处理处理。
做做客群模型吧
从数据库里拉出来对应客群的近期数据,把埋点的数据(短信,通话记录,多头啥的)拉出来,用笛卡尔积拼接成组合特征,用iv,woe挑一些能用的特征出来,常规的划分训练测试验证,公司祖传的是用lightGBM做模型,这种树模型做风控最好用了(甩锅用),一个可解释性就把所有神经网络全干掉,可怜我在研究生器件练就的一身深度学习小trick无处施展,只能用sklearn的参数一点点调过拟合。
哎ε=(´ο`*)))唉,过拟合真严重啊,模型稍微复杂一点,ks值马上给你差个20以上,正则加多一点,验证集马上不work,我们是风控人,也是一群时刻对抗着过拟合和不work的可怜虫,做完的模型改做模型效果验证吧,因为是二分类模型,根据特征把用户划分为良民和刁民,但是那就不能一刀切,主要原因还是因为模型毕竟是模型,几乎不可能做到分类完全准确,这时候那划分概率通过映射函数,把用户特征映射成用户评分(可以简单的理解为蚂蚁花呗信用分)根据评分和一些其他的因素划分额度。
看看策略吧,亏到裤衩漏洞诶
看亏钱不亏钱,策略真实太重要了,要是没有通过率的限制,巴不得分个20箱,就要前3箱的用户,都是大大的良民,可惜要不得,只能根据各个分箱的贷后情况,给不同的额度,比如第一箱的回款达到了1.2,首逾也不高,那就在之前给的额度上提升一些,2000块给调到3000块钱啊,但是不能给多了,要是真给多了直接吃干抹净转眼就把手机卡一掰,所以还是得悠着来,(额度给的多真的会坏回款),有的低分段用户,如果回款太低了,0.6,0.5那种直接就拒掉了,纯纯亏钱生意,如果回款0.7,0.8的,看看之前的额度高不高,如果额度高的话,就降低额度,3000降到1500,(真有可能是额度高的换不上了,给点小钱说不定就还了),不过额度不高那还是拒掉,100块都不给我|ू・ω・` ),你欠我的拿什么还(监狱梗不可取)。
有时候光看评分也不行,还要看一下其他的规则,最常见的就是共债了(在其他的地方借款,比如同时借了花呗和信用卡之类的,顺便想想你花呗还了没呀ლ(´ڡ`ლ)),共债一笔的和共债两笔的在相同评分分箱的表现有啥不同的没,一般来说共债越小,贷后越好,但是也不一定,有的共债56笔的还款歘歘歘(chua)的快,主打的一手灰电平衡,但是这种一般都会越滚越大,肯定暴雷的,所以对高共债的用户,就算首逾回款再好,也不会放给太多钱的。
分配好各个分箱的放款额度后,验证一下这个策略上线后的通过率,放款笔均,预估首逾之类的,当然的通过率越高越好,首逾越低越好。如果做不到,也要看看能达到什么提升,是降了多少首逾,还是提高了通过率,还是笔均提高了。做完之后就可以测试上线合并了。
一点点职场业务/技术之间小感悟
技术支撑着业务,和桌子腿支撑着桌面一样,可以粗可以细,可以镂空,可以奇形怪状,但是终归是要支撑桌面的。技术再精湛,依附在业务上才能体现出技术的价值,以后还是得多多学习下业务, 这个业务也不只是公司的具体项目,还有对工作的安排甚至于人际交往方面,最近认识到最深刻的地方就是拆分的能力,说来也是巧合,这是我在做模型评分分箱中意识到的。一个大问题,看似无法解决,但是将大问题切分,分割成一个个小问题,看看这些小问题是否可以解决,如果不能解决,看看是否可以换成一个等效输入输出的问题,这样的话,即便是大问题无法解决,但还是可以推进项目的,还能在推进的过程中逐步清楚大问题无法解决的原因。很可惜我明白的太晚,如果在星辉游戏面试或者九鼎无双面试的时候将问题能细细的切分,可能就不会偏离答案太大了。
怎么莫名其妙扯到游戏面经上了
举个例子吧,星辉hr问我拿到一个游戏(我当初说的是崩坏三)全部数据,你如何去分析。这真是典型的大问题,面试官问我这道题之后真的被问住了,我没有做游戏业务的经验,所以很难很系统的说出我的回答,只能挑一些无关紧要的运营指标去说(LTV,CPA,埋点数据之类的),我还强行的往技术上引,将这些指标数据拉进模型里,做用户画像辅助参数之类。当时真的紧张了(笑死,如果不是真的喜欢谁会当真那(╥﹏╥))。用现在的眼光复盘一下,发现这个问题还是挺好解决的。
首先是要明确工作目的,从这里就要开始划分了,要分析崩坏三的哪些方面,是崩坏三的营收情况,还是崩坏三的操作ui,还是崩坏三的用户流转,还是~~~~~。将【给你崩坏三全部数据,你如何去分析】这个大问题拆分成【分析崩坏三的营收】,【分析崩坏三的用户流转】等等莫干小问题,虽然看似还是无法解决,但是总归是有了前进的思路。
问题还是没法解决,那就继续拆分吧,【分析崩坏三的营收】这个问题的重点就是营收,营收吗,拆吧,拆成营和收(o(゚Д゚)っ!真这么拆吗),对啊,就这么拆啊,营就是花钱,收就是赚钱,这样问题就变成了【分析崩坏三怎么花钱的】【分析崩坏三怎么赚钱的】。
那么【崩坏三怎么花钱的】这个问题是不是就好解决多了,问题前提条件是我有了崩坏三的全部数据诶,把米哈游的财务抓过来打一顿,问问钱都花在哪了,接着拆吧【崩坏三怎么花钱的】拆成了【崩坏三钱花在哪了的】【崩坏三花了这笔钱的后果】甚至还能推算出【崩坏三钱为什么要花这笔钱】。这样问题是不是就清晰了巨多,
接着研究【分析崩坏三怎么赚钱的】的吧,把米哈游的财务抓过来打一顿,问问钱从哪来的(啊这个可能不用打财务了,问问群里老哥冲了多少就完了٩(๑>◡<๑)۶ ),但是问题好像还能拆喔,【分析崩坏三从谁上赚钱】【分析崩坏三从什么时间上赚钱】同样推导出【崩坏三为什么能从老哥们在这些时候(又可以分成多少个节日哦)赚钱】。
同理同理,将所有问题都拆成了这样一小块一小块的,那【给你崩坏三全部数据,你如何去分析】这个大问题就这么容易的被拆分了(业内黑话叫颗粒度),就算某一个专业问题你不会,解决不来,也能快速询问到对应问题,就比如上面提到拆问题拆成了【崩坏三的某个页面的图标为什么是黄色的】这个美学问题上,我也能快速的定位到美术老师去问这个小问题,【崩坏三为什么在b站上投广告】这个运营问题去问到运营同学,而不是直接问美术老师和运营同学【崩坏三的全部数据】。
通过这么拆分出来,我相信,就算你回答这个问题出现了纰漏,也不会因为偏离题目太多而导致扣去太多面试分,不会出现无头苍蝇还想着往模型上靠,以后就算遇到什么一时无法解决的问题,也能拆分问题,将问题留给能解决的人。
复盘之后,发现面试的时候实在不成熟,如果能面试的时候说处这些,就算不是正确答案,也能体现出我的能力来,面试说不定就过了,就能进入心心念念的游戏行业了,只能说时也运也(题外话,我想做一个游戏demo做为我以后跳槽的项目嘻嘻,还是做游戏捏)
说个虚一点的,我真的有点王阳明格物格竹子的明悟感,以后看待问题,都能有个不同角度了。
题外话
上学的时候,一直研究的都是技术方面(其实也没有研究啦),无论是自己干点项目,打个比赛,还是写论文,还是做实验,都是纯纯为技术考虑,不涉及到钱也不涉及到利益,所以对业务的理解就浅薄了很多,总以为业务就是销售,就是陪酒搭子,就是对我指手画脚的宿管。就算是在实习期间,我也在纯纯的写sql,写python,写算法,写正则,每天过的贼快,下班也不用思考别的,活干完了就开始爽玩。(后来我分析,大概率是外包的缘故,只干活,只输出成果就好了)。但是从正式上班,业务就突兀的横亘在我面前了。怎么赚钱是工作的时候最优先项,作为互金公司的风控数据,直接面对的就是钱,动一动手指就放出去几十万的比索,但是我甚至连比索是啥样的都没见过,我没从来没想过给公司赚钱这个目的,我会这么上心。对业务的理解需求甚至比技术需求强的多的多。调了一个礼拜的模型比不上一条有效特征的并入、还有点小伤感的。
最近敲代码,看着pycharm的黑底,左面的项目文件列表,脑海中浮现出来的是数据不断的在代码,在文件中穿梭,从输入到输出,从数据库到pkl到target测试结果。我还是挺享受这种感觉的。希望我以后可以保持着对技术的热爱,要是纯纯变为业务人,那岂不是少了很多的乐趣