安装sqoop、hive之前需要先安装hadoop、hbase环境,参考上面两篇文章
sqoop:数据迁移工具,可以很方便的将数据在 mysql等数据库 与hadoop、hbase、hive之间迁移。
hive:数据分析挖掘工具,原理是将sql转换成hadoop的map reduce,只要你会sql,就会hive。
sqoop和hive官方还没有提供集群安装,一般也不需要,所以都采用单节点安装,比较简单。
sqoop:
解压即可
tar -zxvf sqoop.gz
我用的mysql,将mysql驱动jar放到sqoop的lib目录即可。
启动:
cd bin;
./sqoop
使用:
第一类:数据库中的数据导入到HDFS上
sqoop import --connect jdbc:mysql://192.168.1.10:3306/test --username root --password 123 --table trade_detail --columns 'id, account, income, expenses'
指定输出路径、指定数据分隔符
sqoop import --connect jdbc:mysql://192.168.1.10:3306/test --username root --password 123 --table trade_detail --target-dir '/sqoop/td' --fields-terminated-by '\t'
指定Map数量 -m
sqoop import --connect jdbc:mysql://192.168.1.10:3306/test --username root --password 123 --table trade_detail --target-dir '/sqoop/td1' --fields-terminated-by '\t' -m 2
增加where条件, 注意:条件必须用引号引起来
sqoop import --connect jdbc:mysql://192.168.1.10:3306/test --username root --password 123 --table trade_detail --where 'id>3' --target-dir '/sqoop/td2'
增加query语句(使用 \ 将语句换行)
sqoop import --connect jdbc:mysql://192.168.1.10:3306/test --username root --password 123 \
--query 'SELECT * FROM trade_detail where id > 2 AND $CONDITIONS' --split-by trade_detail.id --target-dir '/sqoop/td3'
注意:如果使用--query这个命令的时候,需要注意的是where后面的参数,AND $CONDITIONS这个参数必须加上
而且存在单引号与双引号的区别,如果--query后面使用的是双引号,那么需要在$CONDITIONS前加上\即\$CONDITIONS
如果设置map数量为1个时即-m 1,不用加上--split-by ${tablename.column},否则需要加上
第二类:将HDFS上的数据导出到数据库中(不要忘记指定分隔符)
sqoop export --connect jdbc:mysql://192.168.8.120:3306/test --username root --password 123 --export-dir '/td3' --table td_bak -m 1 --fields-terminated-by ','
hive:
解压,tar -zxvf hive.gz
hive默认使用derby数据库,只支持单连接,我们改为mysql数据库
cd conf;
cp hive-default.xml.template hive-site.xml
修改hive-site.xml(删除所有内容,只留一个<property></property>)
添加如下内容:
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://ip:3306/hive?createDatabaseIfNotExist=true</value>
<description>JDBC connect string for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
<description>Driver class name for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
<description>username to use against metastore database</description>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>123</value>
<description>password to use against metastore database</description>
</property>
同样,将驱动包放到hive/lib下
启动: ./hive/bin/hive
使用:
创建表
create table trade_detail (id bigint, account string, income double, expenses double, time string) row format delimited fields terminated by '\t';
create table user_info (id bigint, account string, name string, age int) row format delimited fields terminated by '\t';
将mysq当中的数据直接导入到hive当中
sqoop import --connect jdbc:mysql://192.168.1.10:3306/test --username root --password 123 --table trade_detail --hive-import --hive-overwrite --hive-table trade_detail --fields-terminated-by '\t'
sqoop import --connect jdbc:mysql://192.168.1.10:3306/test --username root --password 123 --table user_info --hive-import --hive-overwrite --hive-table user_info --fields-terminated-by '\t'
创建一个result表保存前一个sql执行的结果
create table result row format delimited fields terminated by '\t' as select t2.account, t2.name, t1.income, t1.expenses, t1.surplus from user_info t2 join (select account, sum(income) as income, sum(expenses) as expenses, sum(income-expenses) as surplus from trade_detail group by account) t1 on (t1.account = t2.account);
create table user (id int, name string) row format delimited fields terminated by '\t'
将本地文件系统上的数据导入到HIVE当中
load data local inpath '/root/user.txt' into table user;
创建外部表
create external table stubak (id int, name string) row format delimited fields terminated by '\t' location '/stubak';
创建分区表
普通表和分区表区别:有大量数据增加的需要建分区表
create table book (id bigint, name string) partitioned by (pubdate string) row format delimited fields terminated by '\t';
分区表加载数据
load data local inpath './book.txt' overwrite into table book partition (pubdate='2010-08-22');