wangshaner1
码龄12年
  • 506,314
    被访问
  • 320
    原创
  • 3,026
    排名
  • 67
    粉丝
  • 0
    铁粉
关注
提问 私信
  • 加入CSDN时间: 2010-05-26
博客简介:

李瑞远-时空数据

博客描述:
www.kangry.net/blog/
查看详细资料
  • 2
    领奖
    总分 137 当月 3
个人成就
  • 获得53次点赞
  • 内容获得102次评论
  • 获得189次收藏
创作历程
  • 3篇
    2022年
  • 23篇
    2021年
  • 18篇
    2020年
  • 2篇
    2017年
  • 7篇
    2016年
  • 240篇
    2015年
  • 20篇
    2014年
  • 19篇
    2013年
成就勋章
TA的专栏
  • 时空数据
    37篇
  • 时空数据管理
    20篇
  • 大数据
    18篇
  • windows
    8篇
  • c++
    216篇
  • coreseek
    6篇
  • VMware Workstation
    1篇
  • mysql
    3篇
  • 算法
    10篇
  • vs
    2篇
  • vs2008
    4篇
  • 论文
    4篇
  • 生活
  • php
    4篇
  • ueditor
    3篇
  • 前端
    9篇
  • 软件使用技巧
    16篇
  • c#
    11篇
  • 工具
    7篇
  • sqlserver
    3篇
  • 面试记录
    4篇
  • oj
    203篇
  • 系统案例
    1篇
  • 移动开发
    1篇
  • 网络
    1篇
  • 云计算
    6篇
  • azure
    3篇
兴趣领域 设置
  • 设计
    uxuiphotoshop
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

基于多智能体强化学习的出租车调度框架

网约车平台的繁荣使得人们比以往能更加“智慧”的出行。平台能实时掌握全局的车辆与乘客的供需关系,从而在车辆与乘客之间实现更加有效的匹配。但车辆与乘客还是会经常遭遇“车辆不停寻找乘客而乘客不停寻找车辆”的困境。产生这种现象的根本原因在于车辆供应与乘客需求的时空匹配程度不够。因此,现有很多研究都着力于调度空闲的车辆来提高两者之间的时空匹配程度。其中,基于强化学习的方法凭借其能够捕捉长期的车辆与乘客供需分布变化,而被广泛研究。在这些基于强化学习的车辆调度研究中,不论是通过中心化的方式协调整个城市的车辆,还是通过车辆
原创
发布博客 2022.06.26 ·
33 阅读 ·
0 点赞 ·
0 评论

github+intellij的一些使用坑

1、git->clone->github,有一些仓库没有展示出来(我的是其他人分享给我的仓库没有展示)。重新登录了github账号(不管用户名还是token),都不能显示完整。解决方案:重新装了intellj 2022.1,之前是2021.3,展示成功2、git push到远程仓库,一直出错,报:the requested url returned error: 403,然而,这个仓库能够pull,能否fork,我也给账号分配了权限。重新登录github账号(不管用户名还是token
原创
发布博客 2022.05.17 ·
30 阅读 ·
0 点赞 ·
0 评论

ICDE 2022 | Apache ShardingSphere: 一个功能全面和可插拔的数据分片平台(附论文)

ICDE 2022论文解读,业界首篇数据分片的顶级会议论文~
原创
发布博客 2022.03.31 ·
1009 阅读 ·
0 点赞 ·
0 评论

AAAI 2021:一种跨城市迁移的新冠肺炎高危社区发现框架

新冠肺炎已经在世界范围内广泛传播,严重影响着人们的日常生活。面对新冠肺炎,人为干预的空间隔离手段(如限制出行或集中隔离)已经被证明其有效性。但是,确诊病例的统计往往是滞后且粗粒度的,比如对于尚未确诊的患者他们的传染过程并没有被考虑,因此直接通过各区域的确诊病例建立时空预测模型的方法效果不佳。基于此,研究人员提出了一种跨城市迁移的新冠肺炎高危社区发现框架,该框架能够从人类移动数据与区域特征对地块的隐式传播性进行建模,并能够将在疫情爆发的源城市中学习到的知识迁移到疫情未爆发目标城市,用于当地高危社区的检测。经过
原创
发布博客 2021.08.25 ·
179 阅读 ·
0 点赞 ·
0 评论

SCI一区论文:基于WiFi信号的病毒存活期内密切接触者追踪

自2019年底开始,新冠疫情的爆发对全球人民的健康与世界经济的发展造成了极大的威胁。及时追踪并隔离病毒的密切接触者在抑制疫情的蔓延中发挥着非常重要的作用。以往密切接触者追踪的方法通常关注与确诊患者有过直接接触的人员,而在近期南京的疫情中,我们发现由于病毒在环境中可存活较长时间,没有与确诊者直接接触但暴露于确诊者逗留过环境中的人员也有很大的感染风险。因此,发掘间接接触的密切接触者也是疫情防控工作中至关重要的一环。本文将介绍香港科技大学计算机科学与工程系陈双幸教授(Prof. Shueng-Han Gary
原创
发布博客 2021.08.09 ·
345 阅读 ·
0 点赞 ·
0 评论

WWW2021:细粒度城市流量预测(附论文链接)

城市流量预测在智慧城市建设中扮演着非常重要的角色,有利于城市交通管理以及保障公共安全。京东城市时空AI团队针对该方向,已提出一系列研究成果[1-9]。然而,目前工作多是围绕粗粒度的预测任务,而面向城市精细化管理需求,需要提供更细粒度的精准流量预测。基于此,京东城市时空AI团队提出一种新型时空AI模型——时空关系网络来预测细粒度的城市流量。相比于传统粗粒度城市流量预测问题,细粒度城市流量预测有两大难点:1)随着网格空间粒度划分的不断细化,相同距离的网格间空间关系会变得更长(多跳),此时考虑多跳空间关系(全
原创
发布博客 2021.04.29 ·
386 阅读 ·
0 点赞 ·
0 评论

如何加快城市路网中最短路径查询效率?

一、介绍最短路查询算法是图论中的经典算法,被广泛地应用在不同场景,例如计算机网络中的路由算法。在时空场景下,最短路算法更是支撑了很多应用,例如在路径规划和推荐中最短路是一种最直接的方案,而目前主流的基于隐马尔科夫模型的轨迹地图匹配算法也会产生大量的最短路查询 [1]。具体如图1所示,在计算相邻两个轨迹点之间可能的匹配路段时,地图匹配算法会首先做一个范围查询确定候选路段,为了计算候选路段之间的转移概率,地图匹配算法会对两个候选集合所有路段两两之间做最短路查询。然而,这些实际应用中的图往往规模巨大,未经优化
原创
发布博客 2021.04.28 ·
247 阅读 ·
0 点赞 ·
0 评论

基于遥感影像及轨迹数据融合的地图自动化生成器

自动化的地图生成对于城市服务及基于位置服务非常重要,现有的工作研究主要利用遥感影像或可以充分反映地图路网情况的车辆轨迹数据生成地图,数据源较为单一,如果能将遥感影像数据及轨迹数据融合起来,地图生成的质量将进一步提高。本文介绍了复旦大学等机构在国际人工智能领域顶会AAAI’20 上发表的论文《DeepDualMapper: A Gated Fusion Network for Automatic Map Extractionusing Aerial Images and Trajectories》。该论文
原创
发布博客 2021.04.28 ·
234 阅读 ·
0 点赞 ·
0 评论

WWW2021: AutoSTG面向时空图预测的神经网络结构搜索(附论文链接)

近年来,随着智能城市建设的大力推进,学术界和工业界开始出现大量关于城市时空数据分析与挖掘的研究工作。面向城市中不同时空预测任务(如交通流量预测、区域客流量预测等),京东智能城市时空AI团队也已提出一系列研究成果[1]。然而针对具体应用任务的神经网络设计需要丰富的领域知识和大量的实验验证,人力成本较高,无法高效支撑实际城市项目落地中复杂多样的时空应用。自动化网络结构搜索是针对深度模型网络设计提出的一类方法,可以面向不同学习任务自动化设计最优网络结构,目前该方法已经取得大量研究进展,但是关于城市中时空图
原创
发布博客 2021.04.28 ·
274 阅读 ·
0 点赞 ·
0 评论

从轨迹中预训练情境时间感知的、用于用户位置预测的地点嵌入

对轨迹数据进行预训练地点嵌入能够用于用户下一个地点预测任务。现有的基于轨迹数据预训练的地点嵌入方法,将一个地点用单一的向量表达。然而在现实世界中,一个地点通常在不同的场景下扮演不同的功能。如果轨迹中的地点嵌入能够准确表达其功能,用户下一个地点预测的性能可以得到提升。本文介绍北京交通大学等机构在国际人工智能领域顶会AAAI’21上发表的论文《Pre-training Context and Time Aware Location Embeddings from Spatial-TemporalTra.
原创
发布博客 2021.04.28 ·
463 阅读 ·
0 点赞 ·
0 评论

HBsae与时空索引技术杂谈

一、背景近年来智能城市建设在云计算和大数据技术的推动下,取得了飞跃式的发展,产生了海量可记录的数据,如文本、视频、传感器读数等。每年移动互联网接入流量消费超过711亿GB,其中,80%的数据都与时空相关。北京出租车三个月内产生了远超790万条轨迹数据,NASA卫星数据档案库已经超过500TB。迅速产生的时空数据,背后蕴藏着巨大的对智能城市发展有用的信息。如,根据交通轨迹来优化交通信号灯的时间、实时提醒路况、辅助规划交通道路等。此外,时空数据还在农业、金融、环境、能源等方面拥有众多的应用。这一系列的时空应
原创
发布博客 2021.04.09 ·
205 阅读 ·
0 点赞 ·
0 评论

Spark任务中空间数据的序列化

一、引言Spark是目前主流的分布式计算框架,通过利用内存存储中间计算结果的方式,优化了MapReduce框架并不擅长的迭代式计算。同时,Spark使用有向无环图(Directed Acyclic Graph,DAG)统筹和优化整个计算流程。另外,Spark基于弹性分布式数据集RDD(Resilient Distributed Datasets)提供了丰富的数据分析算子,大大简化了分布式计算应用的开发难度。序列化和反序列是Spark的一项基本操作。Spark在执行计算任务的过程中,需要在不同的.
原创
发布博客 2021.03.29 ·
78 阅读 ·
0 点赞 ·
0 评论

ICDE 2021: 针对具有噪音和低采样率轨迹的时空相似算法(附论文链接)

随着定位技术的发展以及IOT设备的普及,大量的轨迹数据可以被采集分析。轨迹数据一般被表示成位置与其采集时间的序列。了解轨迹之间的相似度,有非常多的应用,例如:密切接触者追踪,伴侣检测,个性化推荐等。然而,实际应用中,轨迹中的位置信息往往是有噪声的;同时,不同轨迹的采样率有所不同,在某些场景中,轨迹的采样率甚至可能很低。这都为轨迹相似度的比较带来很大的挑战。本文将介绍香港科技大学、台湾交通大学、台湾中兴大学发表在ICDE 2021上的论文《Spatial-Temporal Similarityfor Tr
原创
发布博客 2021.03.23 ·
527 阅读 ·
0 点赞 ·
0 评论

JUST技术:轨迹生成算法的基础做法-序列到序列模型

位置数据,是选址、商铺推荐、广告位投放等业务的重要基础。是否可以在保护原始数据不被泄露的情况下,达到相近的业务效果?一种解决思路就是通过真实轨迹学习城市人群的出行分布来生成轨迹。生成轨迹可以代替包含用户隐私信息的真实轨迹,来达到相近数据分析、上层业务建设的效果,且避免原始位置信息外泄。更多关于轨迹生成算法在智慧城市中的应用场景,在笔者往期文章中有讨论。JUST技术:利用迁移学习生成新城市的轨迹JUST技术:基于无参生成模型的轨迹生成往期我们介绍了两项研究工作:跨城市的Zero-shot轨迹生成技
原创
发布博客 2021.03.21 ·
341 阅读 ·
1 点赞 ·
0 评论

JUST技术:分布式一致性协议概念及Raft协议简介

分布式系统通常由异步网络连接的多个节点构成,每个节点的计算和存储相互独立。分布式一致性指多个节点对某一变量的取值达成一致,一旦达成一致,则变量的本次取值被确定。本文将简单介绍一致性的一些基本概念,以及分布式一致性协议Raft。一、基本概念1.1 副本与数据一致性在分布式系统中,为了保证数据的高可用性,通常会维持数据的多个副本(Replica),这些副本往往会放置在不同的物理机器上。然而,在数据有多份副本的情况下,如果网络、服务器或者软件出现故障,则会导致部分副本写入成功,部分副本写入失败的情况,
原创
发布博客 2021.03.10 ·
153 阅读 ·
0 点赞 ·
1 评论

JUST技术:基于注意力机制恢复细粒度轨迹

随着基于位置服务的大量增长,越来越多的移动数据可以被分析挖掘,以更好地服务人们的生活。然而,与来自出租车等运输系统类的高采样率轨迹数据相比,用户地理服务数据具有严重稀疏性问题,是因为用户不会一直访问移动数据并贡献自己的位置信息(例如微博地址分享,大众点评签到等数据),而数据稀疏性问题不可避免的削弱了其实用价值。如何解决用户移动数据稀疏性,是一个非常具有挑战的问题。本文将介绍清华大学发表在AAAI 2021上的论文《AttnMove: History Enhanced Trajectory Reco.
原创
发布博客 2021.03.05 ·
275 阅读 ·
0 点赞 ·
0 评论

JUST技术:探查城市中的异常事件

城市在正常运行的过程中,也伴随着一些异常事件的发生,例如某一路段突发的交通拥堵,这些异常事件往往会对我们带来负面影响。2014年12月31日,30多万人涌入上海外滩观看除夕灯光秀,人群的数量远远超出了组织者的预期。过度拥挤导致了一场悲惨的踩踏事件(图1),最终造成36人死亡,49人受伤。图1 2014年外滩踩踏事件对城市中异常事件的及时感知甚至提前预测,能够帮助政府或是相关机构及时应对突发异常,将其带来的负面影响降到最低。如果能够提前预测即将发生拥堵的路段,通过对车流的提前疏导能够避免拥堵的进一
原创
发布博客 2021.02.22 ·
719 阅读 ·
0 点赞 ·
0 评论

JUST技术:面向时空数据场景的SQL优化器

一、背景介绍随着智能城市建设的不断升温,海量的时空数据也基于现代的智能设备和卫星定位系统不断产生。在这个过程当中,因为传统的技术无法解决海量时空数据的管理问题,所以出现了很多新技术和新方法,Geomesa就是针对时空场景的开源数据引擎的优秀代表。Geomesa在时空数据方面,一方面完全兼容了OGC规范,可以对时空数据进行非常方便的操作,另一方面它能够基于分布式大数据组件来对时空数据进行存储和查询,这样可以实现存储节点的弹性扩容,更好地管理海量的时空数据。但是Geomesa也存在一些问题,比如Ge
原创
发布博客 2021.02.21 ·
165 阅读 ·
0 点赞 ·
0 评论

JUST技术:从GPS数据中挖掘用户行为习惯

智能设备(如智能手机、互联可穿戴设备)的使用呈指数级的增长。据统计,80%的互联网用户拥有智能手机[1],而移动应用程序的使用每年以6%的速度增长,这创造了大量的信息,并带来了大量的研究和商业机会,如智能城市建设、个性化推荐系统等。根据MIT 的技术研究[2],从手机中收集的GPS位置信息可以洞察出用户的行为习惯,那么我们如何利用这些GPS位置信息去挖掘出用户个体和群体的行为和习惯呢?本文将介绍在IEEE ASONAM 2018上发表的论文《Extracting user habits from Goo
原创
发布博客 2021.02.08 ·
221 阅读 ·
0 点赞 ·
0 评论

京东城市时空数据引擎JUST 斩获“2020年度AI生产力创新奖”

近日,由智一科技产业媒体矩阵智东西、车东西、芯东西联手发起的2020年度AI生产力创新奖评选结果揭晓,京东科技集团“智能城市操作系统”时空大数据引擎JUST(JD Urban Spatio-Temporal Data Engine)因在IOT与智慧城市领域的应用成果,斩获“2020年度AI生产力创新奖”。作为智一科技旗下产业媒体矩阵发起的面向中国AI及先进技术产业落地的年度奖项,AI生产力创新奖旨在聚焦代表中国技术创新的优秀公司,从过去一年推出的人工智能相关行业解决方案中,评选出最具创新和产业变革影响的
原创
发布博客 2021.02.06 ·
2703 阅读 ·
0 点赞 ·
0 评论
加载更多