初入手,苦思不得其解。后看题解,恍然大悟。
一个牧场的直径就是牧场中最远的两个牧区的距离
最小直径 = 新道路左端点所能到达的最远点 + 新道路长度 + 新道路右端点所能到达的最远点
1.先来一套flody。
2.然后遍历每个节点记录每个点所能到达的最远点的距离。
3.再遍历求最小直径。
4.又因为单个牧场直径可能大于新牧场直径,所以需要与两个牧场的直径作比较求较大值
对于第4条的证明:
如图,新牧场最短直径为A2->B1 = 5+10
但实际上牧场A的直径为20,新牧场的最小直径也应该在最后更新为20
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=150+10;
const double inf=100000.0*150.0;
double dist[maxn][maxn];
double x[maxn];
double y[maxn];
double longest[maxn];
double dis(int i,int j){
return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
}
int main(){
int n;
scanf("%d",&n);
//初始化
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
if(i==j) dist[i][j]=0;
else dist[i][j]=inf;
}
}
for(int i=0;i<n;i++){
scanf("%lf%lf",&x[i],&y[i]);
}
int mark;
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
do{
mark=getchar();
}while(mark!='0'&&mark!='1');
if(mark=='1'){
dist[i][j]=dis(i,j);
}
}
}
//flody
for(int k=0;k<n;k++){
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
dist[i][j]=min(dist[i][j],dist[i][k]+dist[k][j]);
}
}
}
//求每个点所能到达的最远点的距离
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
if(dist[i][j]!=inf){
longest[i]=max(longest[i],dist[i][j]);
}
}
}
//求最小直径
double ans=inf;
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
if(dist[i][j]==inf){
ans=min(ans,longest[i]+dis(i,j)+longest[j]);
}
}
}
//与牧场直径做比较
for(int i=0;i<n;i++){
ans=max(ans,longest[i]);
}
printf("%.6lf",ans);
return 0;
}