FZOJ 10154 (网络流)

题目链接
所需知识:网络流
首先思考这个题,它给出了各个元素之间的联系,所以这是道图论题。
其次思考每条边上的属性是权重还是流量?
一个勇士可以打败一条两条龙,从一个节点挑一条或多条边前进正是网络流的特点,所以确定这是个网络流的题。

因为没有明确给出这个图的起点和终点,所以我们想到要用超级源点和超级汇点。
因为每条龙只能打败一次,所以每条龙看作一个节点,向着超级汇点连一条流量为1的边。
因为每个勇者都对应一个龙的集合,所以可以把每个勇者看作一个节点,向他可以打败的每条龙上连一条边。
因为每个勇者都必有机会尝试打败一条龙,成不成功另当别论,所以我们向每个勇者引一条流量为1的边,且要保证这条边一定满流,这就需要附加一个源点SN,由超级源点向SN输送n的流量,再由SN流向每个勇者。
因为女巫有k次复活的机会,且每个勇者只能复活一次,所以我们参考上式,额外创建一个源点SK,从SK向每个勇者引一条流量为1的边,由超级源点向SK输送k的流量,再由SK流向每个勇者。具体的k的流量怎样分配给n个勇者就由最大网络流算法来求。
最后处理一下超级源点,一条边流量为n的边连向SN,一条流量为k的边连向SK,跑一遍最大网络流,OVER。

#include <queue>
#include <cstring>
#include <vector>
#include <iostream>
using namespace std;
const int maxn = 10000 + 10;
const int inf = 0x3f3f3f3f;
struct Edge
{
	int from, to, cap, flow;
};
struct Dinic
{
	int m = 0, s = 0, t = 0;
	vector<Edge> edges;
	vector<int> g[maxn];
	bool vis[maxn];
	int d[maxn];
	int cur[maxn];
	bool bfs()
	{
		memset(vis, 0, sizeof(vis));
		queue<int> q;
		q.push(s);
		d[s] = 0;
		vis[s] = 1;
		while (!q.empty())
		{
			int x = q.front();
			q.pop();
			for (int i = 0; i < g[x].size(); i++)
			{
				Edge &e = edges[g[x][i]];
				if (!vis[e.to] && e.cap > e.flow)
				{
					vis[e.to] = 1;
					d[e.to] = d[x] + 1;
					q.push(e.to);
				}
			}
		}
		return vis[t];
	}
	int dfs(int x, int a)
	{
		if (x == t | a == 0)
			return a;
		int maxflow = 0, f;
		for (int &i = cur[x]; i < g[x].size(); i++)
		{
			Edge &e = edges[g[x][i]];
			if (d[x] + 1 == d[e.to] && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0)
			{
				e.flow += f;
				edges[g[x][i] ^ 1].flow -= f;
				maxflow += f;
				a -= f;
				if (a == 0)
					break;
			}
		}
		return maxflow;
	}
	int Maxflow(int start, int end)
	{
		s = start;
		t = end;
		int flow = 0;
		while (bfs())
		{
			memset(cur, 0, sizeof(cur));
			flow += dfs(s, inf);
		}
		return flow;
	}
	void clear(int n)
	{
		edges.clear();
		for (int i = 0; i <=n; i++)
			g[i].clear();
	}
	void addedge(int from, int to, int cap)
	{
		edges.push_back((Edge){from, to, cap, 0});
		edges.push_back((Edge){to, from, 0, 0});
		m = edges.size();
		g[from].push_back(m - 2);
		g[to].push_back(m - 1);
	}
};
Dinic dn;
int main()
{
	int cnt,var;
	int n,m,k,source,sourceN,sourceK,target;
	scanf("%d%d%d",&n,&m,&k);
	source=n+m+1;
	sourceK=source+1;
	sourceN=sourceK+1;
	target=0;
	dn.clear(m+n+10);
	for(int i=1;i<=n;i++){
		scanf("%d",&cnt);
		while(cnt--){
			scanf("%d",&var);
			dn.addedge(m+i,var,1);
		}
	}
	for(int i=1;i<=n;i++){
		dn.addedge(sourceK,m+i,1);
		dn.addedge(sourceN,m+i,1);
	}
	for(int i=1;i<=m;i++){
		dn.addedge(i,target,1);
	}
	dn.addedge(source,sourceK,k);
	dn.addedge(source,sourceN,n);
	int ans=dn.Maxflow(source,target);
	printf("%d",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值