题目链接
所需知识:网络流
首先思考这个题,它给出了各个元素之间的联系,所以这是道图论题。
其次思考每条边上的属性是权重还是流量?
一个勇士可以打败一条或两条龙,从一个节点挑一条或多条边前进正是网络流的特点,所以确定这是个网络流的题。
因为没有明确给出这个图的起点和终点,所以我们想到要用超级源点和超级汇点。
因为每条龙只能打败一次,所以每条龙看作一个节点,向着超级汇点连一条流量为1的边。
因为每个勇者都对应一个龙的集合,所以可以把每个勇者看作一个节点,向他可以打败的每条龙上连一条边。
因为每个勇者都必有机会尝试打败一条龙,成不成功另当别论,所以我们向每个勇者引一条流量为1的边,且要保证这条边一定满流,这就需要附加一个源点SN,由超级源点向SN输送n的流量,再由SN流向每个勇者。
因为女巫有k次复活的机会,且每个勇者只能复活一次,所以我们参考上式,额外创建一个源点SK,从SK向每个勇者引一条流量为1的边,由超级源点向SK输送k的流量,再由SK流向每个勇者。具体的k的流量怎样分配给n个勇者就由最大网络流算法来求。
最后处理一下超级源点,一条边流量为n的边连向SN,一条流量为k的边连向SK,跑一遍最大网络流,OVER。
#include <queue>
#include <cstring>
#include <vector>
#include <iostream>
using namespace std;
const int maxn = 10000 + 10;
const int inf = 0x3f3f3f3f;
struct Edge
{
int from, to, cap, flow;
};
struct Dinic
{
int m = 0, s = 0, t = 0;
vector<Edge> edges;
vector<int> g[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
bool bfs()
{
memset(vis, 0, sizeof(vis));
queue<int> q;
q.push(s);
d[s] = 0;
vis[s] = 1;
while (!q.empty())
{
int x = q.front();
q.pop();
for (int i = 0; i < g[x].size(); i++)
{
Edge &e = edges[g[x][i]];
if (!vis[e.to] && e.cap > e.flow)
{
vis[e.to] = 1;
d[e.to] = d[x] + 1;
q.push(e.to);
}
}
}
return vis[t];
}
int dfs(int x, int a)
{
if (x == t | a == 0)
return a;
int maxflow = 0, f;
for (int &i = cur[x]; i < g[x].size(); i++)
{
Edge &e = edges[g[x][i]];
if (d[x] + 1 == d[e.to] && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0)
{
e.flow += f;
edges[g[x][i] ^ 1].flow -= f;
maxflow += f;
a -= f;
if (a == 0)
break;
}
}
return maxflow;
}
int Maxflow(int start, int end)
{
s = start;
t = end;
int flow = 0;
while (bfs())
{
memset(cur, 0, sizeof(cur));
flow += dfs(s, inf);
}
return flow;
}
void clear(int n)
{
edges.clear();
for (int i = 0; i <=n; i++)
g[i].clear();
}
void addedge(int from, int to, int cap)
{
edges.push_back((Edge){from, to, cap, 0});
edges.push_back((Edge){to, from, 0, 0});
m = edges.size();
g[from].push_back(m - 2);
g[to].push_back(m - 1);
}
};
Dinic dn;
int main()
{
int cnt,var;
int n,m,k,source,sourceN,sourceK,target;
scanf("%d%d%d",&n,&m,&k);
source=n+m+1;
sourceK=source+1;
sourceN=sourceK+1;
target=0;
dn.clear(m+n+10);
for(int i=1;i<=n;i++){
scanf("%d",&cnt);
while(cnt--){
scanf("%d",&var);
dn.addedge(m+i,var,1);
}
}
for(int i=1;i<=n;i++){
dn.addedge(sourceK,m+i,1);
dn.addedge(sourceN,m+i,1);
}
for(int i=1;i<=m;i++){
dn.addedge(i,target,1);
}
dn.addedge(source,sourceK,k);
dn.addedge(source,sourceN,n);
int ans=dn.Maxflow(source,target);
printf("%d",ans);
return 0;
}