3GPP RAN TSG#102闭幕及R19启动项目-11(On AI/ML for Air Interface))2/2

On AI/ML for Air Interface bjectives-主体提案编号:RP-232747

3.3 Positioning use case

定位用例涵盖两个子用例:直接 AI/ML 定位和 AI/ML 辅助定位。SI 中列出的案例也在表 1 中列出,并且为了使工作范围易于管理,我们建议对这些用例进行向下选择,以便在规范阶段实施。
总结:
定位用例包括直接 AI/ML 定位和 AI/ML 辅助定位两种子用例。
为了使工作范围可控,需要对 SI 中列出的用例进行向下选择。
建议表 1 中突出显示的用例作为向下选择的候选用例。
Table 1: AI/ML-based positioning categories from the SI and our Case proposals for normative work highlighted in green.
在这里插入图片描述
在下面,我们讨论了进行此筛选的动机。根据RAN1对基于人工智能/机器学习的定位的评估,在TR [1]中得出结论:
• 无论是直接的人工智能/机器学习定位还是辅助的人工智能/机器学习定位,都可以显著提高与现有基于RAT的定位方法相比的定位精度。
• 根据进行的分析,建议继续进行基于人工智能/机器学习的定位的规范工作。
虽然有许多可能的方法来指定UE定位的人工智能/机器学习模型,但评估结果表明其中一些具有可比较的性能。评估结果还显示,考虑到泛化方面、成本(包括潜在的规范影响和信令开销)以及可实现的定位精度,一些方法是首选的。
这段文本主要讨论了将定位用例进行向下选择的必要性,原因包括:

更精准的定位: 基于 RAN1 的评估,AI/ML 定位(无论直接还是辅助)与现有的依赖 RAT 的定位方法相比,能显著提升定位精度。

工作量和目标管理: 为了合理安排工作量和实现可行目标,RAN 提出限制包含在工作项目中的范围和子用例。

评估结果指导取舍: 虽然定位 AI/ML 模型的规范方式有很多,但评估结果表明,某些方法具有相似的性能,同时考虑到泛化能力、成本(包括潜在的规范影响和信令开销)和可实现的定位精度,某些方法更具优势。
在这里插入图片描述
尽管有许多可能的方式来指定UE定位的人工智能/机器学习模型,评估结果显示其中一些具有可比较的性能。评估结果还表明,考虑到泛化方面、成本(包括潜在的规范影响和信令开销)以及可实现的定位精度,一些方法更受偏爱。

RAN应在工作项期间规划合理的工作量和目标。因此,我们建议限制范围和要包含的子用例。我们对将在工作项中考虑的用例进行的高级评估如下:

AI/ML直接定位和辅助定位方法:评估结果显示两者都能达到非常相似的定位精度。它们之间的差异在于其他设计方面。

2b和3b直接AI/ML定位的规范影响和信令开销预计会更大,因为它需要通过标准化接口发送通道测量(例如,CIR、PDP、DP)。相比之下,对于辅助定位2a/3a案例,仅将模型输出(例如,RSTD、LOS/NLOS指示器)发送到LMF以支持常规定位方法(例如,三角测量)。

采用直接AI/ML定位在LMF上的复杂性预计会很高,因为它需要更新LMF以托管AI/ML模型和相关功能。需要更新UE(案例2b)或gNB(案例3b)以将增强的通道测量(例如,CIR、PDP、DP)发送到LMF。相比之下,通过生成与LMF接收的现有IE一致的模型输出(例如,RSTD),AI/ML辅助定位(案例2a/3a)可能不需要LMF更新,即在升级5GS以支持基于AI/ML的定位的同时可以重用LMF。在考虑采用AI/ML模型的便利性时,最小化影响范围是一个重要的优势。

鉴于 AI/ML 辅助定位案例 2a/3a 相对于直接 AI/ML 定位案例 2b/3b 所具有的上述优势,我们建议将 2b/3b 排除在 Rel-19 工作项目范围之外。
解释:
作者认为 AI/ML 辅助定位案例 2a/3a 更具优势,因为它:

规范影响和信令开销更小;

可能不需要更新 LMF,更易于部署;

定位精度与直接定位方法相当。

因此,作者建议将直接定位案例 2b/3b 从 Rel-19 工作项目中排除,以集中精力开发更具优势的辅助定位方法。

提案 4:
为了限制 Rel-19 工作项目在定位方面的范围,AI/ML 案例 2b 和 3b(直接定位)不被纳入 Rel-19 的考虑范围。
UE 侧模型和 NW 侧模型:
评估结果显示,NW 侧和 UE 侧 AI/ML 模型可以实现相似的性能,因为两侧都可以构建相似的 AI/ML 模型。主要区别在于潜在的规范影响和信令开销。
规范工作阶段可以支持 UE 侧和 NW 侧模型。
建议:
将范围限制为 UE 侧模型和 NW 侧模型的单个用例。
关于 UE 侧模型(案例 1、案例 2a):
案例 1:整个过程(从执行 PRS 测量到确定 UE 位置)完全在 UE 内进行。UE 位置使用传统的 LPP 协议报告回 LMF 节点。大多数 AI/ML 方面取决于 UE 的实现。只有训练数据收集需要规范支持,例如模型输入的测量精度要求以及训练数据报告格式(例如,值范围和量化位数)。因此,与案例 2a 相比,案例 1 相对容易指定。
案例 2a:在性能方面与案例 3a 相似。然而,考虑到模型泛化,案例 3a 比案例 2a 有明显优势。除非 UE 移动性有限且事先已知,否则 UE 很难拥有一个在 UE 从一个小区移动到另一个小区时能很好地泛化的 AI/ML 模型。此外,与案例 3a 相比,案例 2a 可能需要额外的信令支持。例如,训练和推理的数据收集需要通过空中接口从 UE 传输大量数据到网络。模型监控也需要 UE 和网络之间的密切协调,即使模型监控是由 UE 执行的。因此,案例 2a 的吸引力不如案例 3a,应降低其优先级。
在这里插入图片描述
提案 5:

为了限制规范阶段 Rel-19 AI/ML 定位用例的范围,建议将 Rel-19 定位工作项目的范围限制在案例 1 和案例 3a 上。

定位规范影响高层评估:

RAN1/RAN2/RAN3 规范影响:

训练数据收集的程序和信令格式,包括收集 UE(案例 1)和 gNB(案例 3a)生成的用于模型输入的测量数据、相应的地面真实标签(例如,来自 PRU)以及支持模型所需的任何辅助数据(例如,有效性条件)。

模型监控的程序和信令格式,包括 UE/gNB 向 LMF 报告的模型监控决策,该决策由 UE(案例 1)或 gNB(案例 3a)生成。

RAN4 规范影响:

可能包括模型输入和输出的准确性要求(如果需要)。

评估是否需要证明泛化,以及定义实现所需泛化的充分灵活的测试场景。

模型监控相关要求和指标。

指定与模型训练和测量报告相对应的核心要求。

3.4 On the CSI use cases

分析和提案:双边 CSI 压缩和单边 CSI 预测。
在这里插入图片描述
双边 CSI 压缩
观察和分析:
用户感知吞吐量 (UPT) 增益不明显,非 AI 基于 Rel.18 的 CSI 增强似乎具有更大的 UPT 增益潜力。
UCI 有效载减少增益与最近的 Rel.18 非 AI CSI 增强类似。
与非 AI CSI 报告相比,UE 中的计算复杂性增加高达 61 到 4900 倍,具体取决于使用的 AI 模型。
多供应商培训是理论上可行的,但组织和实施所需的行业努力预计很大。
基于上述观察,RAN1 认为没有共识推荐 Rel.19 的 CSI 压缩规范阶段。
互操作性担忧:
引入双边模型可能会严重破坏 3GPP 标准化的互操作性优势和 Uu 接口的开放性。网络需要与大量解码器模型一起训练并实时运行,UE 需要针对不同网络进行训练并能够加载不同的模型。
观察 2:引入双边 AI/ML 模型可能会严重破坏 3GPP 标准化的互操作性优势和 Uu 接口的开放性。
建议:
提案 6:Rel.19 中不进行基于 A/ML 的 CSI 压缩规范工作。
提案 7:如果继续研究双边模型,则研究中应考虑带有标准化推理编码器的解决方案。
单边 CSI 预测
观察和分析:
AI/ML 预测与非 AI/ML 预测的平均 UPT 增益最高为 0.7%~7%,但也有一些观察到性能损失的情况。
非 AI 基于自回归模型在使用的 3GPP 合成信道模型上表现良好,AI 没有太多发挥空间。使用真实数据训练 AI/ML 可能改善预测性能。
由于 CSI 预测是 UE 侧模型,与其他 UE 侧模型用例有很多相似之处,我们支持 Rel.19 规范化 CSI 预测工作。
建议:
提案 8:开始 Rel.19 规范化工作,用于 UE 侧 CSI 预测。
规范影响评估:
RAN1/RAN2 规范影响:UE 侧模型的信令机制,用于促进与模型推理、训练、监控和相关网络报告有关的数据收集。
RAN4 预计需要解决 CSI 预测的测试和要求。
总结:
该文本详细分析了双边 CSI 压缩和单边 CSI 预测的观察和规范影响,并提出了相应的建议。对于双边 CSI 压缩,由于性能增益有限且互操作性存在担忧,建议不纳入 Rel.19 规范阶段。对于单边 CSI 预测,由于其与其他 UE 侧模型用例的相似性以及潜在的性能提升,建议将其纳入 Rel.19 规范工作。
在这里插入图片描述

4、Discussion on remaining RAN4 open issues for AI/ML PHY

讨论了 RAN4 中关于 AI/ML 在 PHY 层应用的研究现状和面临的挑战。主要内容包括:
RAN4 与 RAN1 在 AI/ML 研究中的不同角色:
RAN1 侧重于探索 AI/ML 在 PHY 层的潜在收益以及所需的信令和流程 (与 RAN2 合作)。
RAN4 侧重于制定核心需求和一致性测试参数,确保 AI 功能的预期性能和可互操作性。
RAN4 面临的挑战:
确保 AI 算法的预期和可预测性能。
制定合适的 AI 功能需求指标和测试条件。
评估 AI 模型的可泛化能力,即其在不同场景和配置下的适应性。
处理 AI 生命周期管理 (LCM) 相关流程,例如模型激活和监控。
考虑双边 AI 模型带来的互操作性和测试问题。
所需资源:
如果研究所有用例,RAN4 需要大约 3 个时段 (TU) 的研究时间。
详细解读:
AI/ML 在 PHY 层是一个新范式,需要时间才能达成具体的提案。 目前的讨论为后续规范工作奠定了基础。
RAN4 不直接比较 AI 和非 AI 方案的性能,而是假设 AI 方案在某些方面优于非 AI 方案,并制定相关的信令和流程。 目的是确保实际实现中 AI 功能的预期性能和可互操作性。
RAN4 研究的重点在于:
定义每个用例的核心需求指标和描述,作为制定核心需求的基础。
评估 AI 功能在不同场景、信道和配置下的行为,以验证其可泛化能力。
设计测试条件和测试方法,确保对每个用例进行充分的测试和验证。
测试 AI 模型的可泛化范围,并制定相应的要求。
制定与 LCM 相关的需求,例如模型激活和监控。
研究更新或更改模型的方法。
考虑可测试性和参考架构。
定义需求时,RAN4 可能需要根据每个用例进行以下部分或全部工作:
达成参考模型和参数化的一致性。
就训练数据的大致假设达成共识。
找到模拟结果对齐的方法。
进行模拟结果的呈现和一致性验证。
确定适当的实现容限。
双边 AI 模型除了上述的挑战,还存在互操作性和测试的重大问题。 如果继续研究双边 AI,RAN4 需要进一步的思考。
由于 AI/ML 依赖数据驱动,RAN4 需要更多的时间来研究和处理这一新范式。
总而言之,RAN4 在 AI/ML 的研究面临着诸多挑战,需要时间和资源来克服。本文对这些挑战及其解决方案进行了初步探讨,后续的研究还需要 RAN4 各方共同努力。
在这里插入图片描述

5、针对 PHY 的 Rel.19 AI/ML 的组织结构

3GPP AI/ML PHY 研究:单边模型,双边模型,和资源分配提案3GPP 中 AI/ML 在 PHY 层应用的研究现状和资源分配建议。主要内容包括:
对双边模型的研究需要更多时间: 由于双边模型在互操作性和测试方面存在较大挑战,需要额外时间进行深入研究。
建议继续研究双边模型: 可以通过在 Rel.19 延续并调整 Rel.18 的 SI (类似 XR 的处理方式) 来实现,但研究范围仅限于双边模型。
资源分配提案:
Rel.19 AI/ML 研究应当分配 3 个时段 (TU) 给 RAN1 的单边模型工作组 (WI),1 个时段给跨 RAN1、RAN2 和 RAN4 的双边模型 SI。
RAN4 可以考虑在雅典会议上分配少量时段 (0.5 TU) 继续讨论 AI/ML,并在 3 月份正式启动 Rel.19 研究。
详细解读:
目前双边模型的研究遇到了一些问题,例如互操作性和测试的挑战,需要更多时间来解决。
作者建议继续研究双边模型,但将研究范围缩小到 CSI 压缩,并通过延续并调整 Rel.18 的 SI 来开展相关工作。
资源分配方面,作者建议将 Rel.19 AI/ML 研究的时段分配为:3 个时段给 RAN1 的单边模型工作组,1 个时段给跨 RAN1、RAN2 和 RAN4 的双边模型 SI。
考虑到 RAN4 已经开始讨论 AI/ML,且单边模型的工作也需要大量时间和精力,作者建议在雅典会议上分配少量时段 (0.5 TU) 继续讨论 AI/ML 相关话题,以便 RAN4 和其他工作组更好地协调和对齐。
在雅典会议上讨论的议题可以包括:
RAN4 需求覆盖范围的可行性 / 必要性,以及是否需要动态测试。
部署后如何处理 UE 模型的更新/变化。
“传统”作为“基线”的具体含义 (例如,行为是否应该与需求测试点之外的部署场景相媲美)。
RAN4 如何就设置需求的参考模型达成一致。
RAN4 完成需求工作所需的工作概要。
定位用例是否需要针对直接定位制定需求。
如果进一步研究双边 CSI,需要什么样的测试框架。
总而言之,这篇文本提出了继续研究双边模型的建议,并针对 Rel.19 AI/ML 研究的资源分配做出了具体的提案。这些建议旨在促进 3GPP AI/ML PHY 研究的顺利开展,并确保各工作组之间的协调和合作。
5、结论
基于之前讨论的建议:

  1. Rel-19 AI/ML 规范化工作范围:
    建议考虑将 UE 侧或 OTT 侧作为 UE 侧模型训练的可行位置。
    避免包含模型转移和基于模型 ID 的 LCM 规范化工作。
  2. 定位用例:
    不将 AI/ML 直接定位 (Case 2b 和 3b) 纳入 Rel-19 规范化工作。
    将 Rel-19 定位用例规范化工作限制在 Case 1 和 Case 3a。
  3. CSI 压缩:
    不进行基于 A/ML 的 CSI 压缩规范化工作。
    如果继续研究双边模型,应考虑带有标准化推理编码器的解决方案。
  4. CSI 预测:
    开始 Rel-19 规范化工作,用于 UE 侧 CSI 预测。
  5. 资源分配:
    Rel-19 AI/ML 研究分配 3 个时段给 RAN1 的单边模型工作组,1 个时段给跨 RAN1、RAN2 和 RAN4 的双边模型 SI。
    RAN4 根据用例数量分配最多 3 个时段,考虑在雅典会议上分配 0.5 个时段继续讨论 AI/ML。
    总结:
    这些建议旨在为 Rel-19 AI/ML 研究指明方向,聚焦于可行且互操作的解决方案,并合理分配资源,确保不同工作组之间的协调合作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值