2022.3.2浙江理工大学每日一题——计算机(SDOI 2011)

第一次写博客!!!!如有问题还请见谅!!!

题目描述

原题来自:SDOI 2011

你被要求设计一个计算器完成以下三项任务:

  1. 给定 y,z,p,计算 y^z mod p 的值;
  2. 给定 y,z,p,  计算满足 x×y≡z (modp ) 的最小非负整数 x;
  3. 给定 y,z,p,计算满足y^x≡z (modp ) 的最小非负整数 x。

输入

输入包含多组数据。

第一行包含两个正整数 T,K 分别表示数据组数和询问类型(对于一个测试点内的所有数据,询问类型相同);
以下 T 行每行包含三个正整数 y,z,p,描述一个询问。

输出

对于每个询问,输出一行答案。

对于询问类型 2 和 3,如果不存在满足条件的,则输出 Orz, I cannot find x!,注意逗号与 I 之间有一个空格。

样例输入 Copy

【样例输入1】
3 1
2 1 3
2 2 3
2 3 3
【样例输入2】
3 2
2 1 3
2 2 3
2 3 3

样例输出 Copy

【样例输出1】
2
1
2
【样例输出2】
2
1
0

提示

数据范围与提示

对于全部数据,1≤y,z,p≤10^9,1≤T≤10,且保证 p 为质数。

以下为同余理论常见符号

任务一可通过快速幂的板子解决

ll fpow(ll a,ll b,ll k)
{
    ll r=1;
    while(b)
    {
        if(b&1) r=(r*a)%k;
        b>>=1;
        a=(a*a)%k;
    }
    return r;
}

任务二即线性同余方程,可运用扩展欧几里得算法(exgcd) ,其前置知识为裴蜀定理

(此外还可以采用费马小定理 个人感觉此处采用费马小定理会更方便,展示见最后)

ll exgcd(ll a, ll b, ll& x, ll& y) {
  if (b == 0) {
    x = 1;
    y = 0;
    return a;
  }
  ll d = exgcd(b, a % b, x, y);
  ll temp = x;
  x = y;
  y = temp - a / b * y;
  return d;
}

因为exgcd求出来的是ax+by=gcd(a,b)的解,所以求出的解还需要进一步变形,即将解乘以c/gcd(a,b);

在该式中 x*y≡z (modp ) --->x*y\equivk*p+z---->x*y+k*p=z。

任务三则运用了BSGS算法(大步小步)   

BSGS(baby-step giant-step),即大步小步算法。常用于求解离散对数问题。该算法可在O(\sqrt{p})的时间内求解a^{x}\equiv b(mod p),其中 a\perp p 。(详细原理见链接来自oi-wiki)

ll bsgs(ll a, ll b, ll n) {
        a %= n;
        b %= n;
	if (a == 0) return b == 0 ? 1 : -1;
        if (b == 1) return 0;
	ll t = sqrt(n) + 1;
	map<ll, ll> Hash;
	Hash.clear();
	for (ll i = 0; i < t; i++) {
		ll val = b * fpow(a, i, n) % n;
		Hash[val] = i;
	}
	a = fpow(a, t, n);
	for (ll i = 1; i <= t; i++) {
		ll now = fpow(a, i, n);
		if (Hash.find(now) != Hash.end()) now = Hash[now];
		else now = -1;
		if (now != -1) return i * t - now;
	}
	return -1;
}

最终代码如下


#include<bits/stdc++.h>
#define INF 0x3f3f3f
#define endl "\n"
typedef long long ll;
using namespace std;
const ll N=2e5+10;


ll gcd(ll a,ll b){
    return b==0?a:gcd(b,a%b);
}
//快速幂  
ll fpow(ll a,ll b,ll k)
{
    ll r=1;
    while(b)
    {
        if(b&1) r=(r*a)%k;
        b>>=1;
        a=(a*a)%k;
    }
    return r;
}
ll exgcd(ll a, ll b, ll& x, ll& y) {
  if (b == 0) {
    x = 1;
    y = 0;
    return a;
  }
  ll d = exgcd(b, a % b, x, y);
  ll temp = x;
  x = y;
  y = temp - a / b * y;
  return d;
}

ll bsgs(ll a, ll b, ll n) {
        a %= n;
        b %= n;
	if (a == 0) return b == 0 ? 1 : -1;
        if (b == 1) return 0;
	ll t = sqrt(n) + 1;
	map<ll, ll> Hash;
	Hash.clear();
	for (ll i = 0; i < t; i++) {
		ll val = b * fpow(a, i, n) % n;
		Hash[val] = i;
	}
	a = fpow(a, t, n);
	for (ll i = 1; i <= t; i++) {
		ll now = fpow(a, i, n);
		if (Hash.find(now) != Hash.end()) now = Hash[now];
		else now = -1;
		if (now != -1) return i * t - now;
	}
	return -1;
}

int main()
{
	ios::sync_with_stdio(false);
 	cin.tie(0);   cout.tie(0);
    // freopen(".in", "r", stdin);
	// freopen(".out", "w", stdout);
	ll t,k,a,b,x,ans,m,n;
	ll p;
	cin>>t>>k;
	while(t--)
	{
		cin>>a>>b>>p; 
		if(k==1)
		{
			a%=p;
			ans=fpow(a,b,p);
			cout<<ans<<endl;
		}
		else if(k==2)
		{
			ll x,y;
			ll d=exgcd(a,p,x,y);
			if(b%d)
			{
				cout<<"Orz, I cannot find x!"<<endl;
				continue;
			} 
			ll t=p/d;
			while(x<0) x+=t;
			x=((x*b)%t+t)%t;
			 cout<<x<<endl;
			
		}
        /*	else if(k==2)
		{
			y%=p;
			z%=p;
			x=fpow(y,p-2,p)*z%p;
			if(!y&&z)
			{
				cout<<"Orz, I cannot find x!"<<endl;
				continue;
			} 
			
			
			else cout<<x<<endl;
			
		}   费马小定理解法*/ 
		else if(k==3)
		{
			ll ans=bsgs(a,b,p);
			if(ans==-1) cout<<"Orz, I cannot find x!"<<endl;
			else cout<<ans<<endl;	
		}
	}
	
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值