学习笔记
karswinwinwin
这个作者很懒,什么都没留下…
展开
-
机器学习算法(三):K近邻(k-nearest neighbors)
1 KNN的介绍和应用 KNN建立过程 1 给定测试样本,计算它与训练集中的每一个样本的距离。 2 找出距离近期的K个训练样本。作为测试样本的近邻。 3 依据这K个近邻归属的类别来确定样本的类别。 类别的判定 ①投票决定,少数服从多数。取类别最多的为测试样本类别。 ②加权投票法,依据计算得出距离的远近,对近邻的投票进行加权,距离越近则权重越大,设定权重为距离平方的倒数。 2 学习目标 了解KNN怎么做分类问题了解KNN如何做回归了解KNN怎么做空值填充, 如何使用knn构建带有空值的pipeline 2原创 2020-12-25 21:59:47 · 196 阅读 · 0 评论 -
机器学习笔记——朴素贝叶斯
1.朴素贝叶斯算法介绍 (1)朴素:特征条件独立;贝叶斯:基于贝叶斯定理 (2) 应用: 朴素贝叶斯算法假设所有特征的出现相互独立互不影响,每一特征同等重要,又因为其简单,而且具有很好的可解释性一般。相对于其他精心设计的更复杂的分类算法,朴素贝叶斯分类算法是学习效率和分类效果较好的分类器之一。朴素贝叶斯算法一般应用在文本分类,垃圾邮件的分类,信用评估,钓鱼网站检测等。 2. 学习实践 2.1 学习目标 掌握朴素贝叶斯公式 结合两个实例了解朴素贝叶斯的参数估计掌握朴素贝叶斯估计 2.2 代码流程 Part 1原创 2020-12-25 21:49:56 · 143 阅读 · 0 评论