自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(50)
  • 收藏
  • 关注

原创 如何使用YOLO11-SEG训练多类别植物花朵识别数据集,模型测试和推理_植物花朵数据集,玫瑰,向日葵,郁金香,百合,牡丹,支持直接YOLO训练,专业视角 已标注好 5000张

本文详细介绍了使用YOLO11-SEG模型训练多类别植物花朵识别数据集的全过程。包含5000张标注图片的数据集被划分为训练集(70%)、验证集(20%)和测试集(10%)。文章解析了YOLO11-SEG的架构配置,并提供了针对花朵识别任务的优化建议。训练部分展示了完整的训练脚本和参数设置,包括数据增强、损失权重等关键参数。最后介绍了模型评估方法,在测试集上验证模型性能并展示分割效果。该方法可实现玫瑰、向日葵等5类花朵的精确识别,适用于农业监测、生态研究等应用场景。

2026-01-19 12:11:01 557

原创 肾脏超声图像质量评估与分类系统实现(附Mask R-CNN模型训练)_1

本文介绍了一个基于Mask R-CNN的肾脏超声图像质量评估与分类系统。该系统通过深度学习技术自动评估超声图像质量并分割肾脏区域,辅助医生诊断。研究收集了2000例临床图像,采用数据增强和预处理优化模型性能。改进的Mask R-CNN架构实现了92.7%的分类准确率和87.3%的mIoU。系统部署采用本地化方案,确保数据安全。临床应用表明,该系统能有效提高诊断效率,减少主观误差,具有重要的医疗价值。

2026-01-19 11:24:34 748

原创 肾衰竭医学影像多类别目标检测:基于Mask R-CNN的囊肿、肾脏、结石和肿瘤六类病变特征识别_1

本文提出了一种基于Mask R-CNN的肾衰竭医学影像多目标检测方法,实现了对囊肿、肾脏、结石和肿瘤等六类病变的自动识别与分割。研究使用来自三家三甲医院的1200例患者CT图像构建数据集,通过数据增强和预处理优化模型输入。实验结果显示,该方法在精确率、召回率和Dice系数等指标上优于现有方法,能准确检测和分割各类病变。尽管在小目标检测和泛化能力方面仍有改进空间,但该方法展现了良好的临床应用前景,可作为辅助诊断工具提高肾衰竭病变检测效率和准确性。未来研究将关注多尺度特征融合和轻量化模型设计等方向。

2026-01-19 10:49:07 528

原创 YOLO11-HSFPN网络结构优化:开合跳动作检测实战

本文提出了一种改进的YOLO11-HSFPN网络用于开合跳动作检测。针对开合跳动作幅度大、需同时捕捉肢体运动的特点,引入HSFPN特征金字塔网络增强特征提取能力,通过多尺度特征融合提升检测精度。实验使用包含150,000张标注图像的数据集,采用数据增强和渐进式训练策略。结果显示,改进模型在保持38FPS实时性的同时,mAP达到91.3%,较标准YOLO11提升5.2%。该模型可应用于健身APP动作计数、运动监测等场景,未来将扩展至更多健身动作识别。

2026-01-19 09:59:03 270

原创 基于YOLO12-A2C2f-EDFFN的铁线圈检测与识别系统_1

从YOLOv1到YOLOv13,我们看到了目标检测技术的飞速发展。每个版本的改进都针对前一个版本的不足,同时引入新的创新思想。追求极致速度:YOLOv5n/v6n/v8n等轻量级模型平衡速度与精度:YOLOv5s/v6s/v8s等中小型模型追求最高精度:YOLOv5x/v6x/v8x等大型模型特殊任务需求:如实例分割可考虑YOLOv8-seg,姿态估计可考虑YOLOv8-pose等【推广】在项目开发过程中,遇到技术难题是很正常的。

2026-01-19 09:03:19 348

原创 YOLOv8-Seg改进系列真空喷嘴质量检测与分类任务实现

YOLOv8-Seg改进在真空喷嘴质量检测中的应用 摘要 本文提出了一种改进的YOLOv8-Seg算法,用于真空喷嘴质量检测与分类任务。针对真空喷嘴缺陷检测的特殊性,我们优化了分割头和原型掩码生成机制,包括: 引入特征增强模块和多尺度空洞卷积 设计空间-通道双重注意力机制 改进原型掩码动态生成机制 实现多级原型融合 实验结果表明,改进后的算法在检测精度和分割效果上均有显著提升,能够有效识别裂纹、磨损、变形等多种缺陷类型。该方法为工业质检领域提供了一种高效、准确的自动化解决方案。

2026-01-18 18:58:17 369

原创 室内环境中的人员检测与识别:基于Deformable-DETR的两阶段改进模型实现与分析

本文提出了一种基于Deformable-DETR的两阶段改进模型,用于提升室内复杂场景下的人员检测性能。针对室内环境中存在的遮挡、光照变化和背景干扰等问题,模型通过引入通道注意力机制和多尺度可变形注意力机制进行优化,并结合改进的损失函数和针对性数据增强策略。实验结果表明,该模型在精确率、召回率和mAP等指标上均优于原始Deformable-DETR和YOLOv5,特别是在处理遮挡目标时表现出色。该技术可应用于智能家居、安防监控等多个领域,未来将进一步优化模型轻量化和3D姿态估计能力。

2026-01-18 18:14:50 862

原创 基于YOLOv8的车站客流状态检测与人群密度估计系统

摘要:本文提出了一种基于YOLOv8的车站客流状态检测与人群密度估计系统,通过计算机视觉技术实现车站客流实时监测。系统采用YOLOv8模型进行人体检测,结合空间密度分析算法评估客流状态,将结果划分为5个等级并提供管理建议。测试显示,该系统检测准确率达94.2%,处理速度42FPS,能有效识别拥挤区域并辅助车站管理决策。该方案为智能车站管理提供了可靠的技术支持,具有较高的实用价值。

2026-01-18 16:33:46 583

原创 使用yolov8-seg-ContextGuidedDown实现石灰石图像分割并评估模型性能

本文介绍了基于改进YOLOv8-seg模型的石灰石图像分割方法,通过引入ContextGuidedDown注意力机制提升分割性能。研究构建了包含5000张图像的石灰石数据集,采用多种数据增强技术提高模型泛化能力。改进后的YOLOv8-seg-ContextGuidedDown模型在复杂背景和小目标分割中表现优异,通过复合损失函数优化训练过程。实验结果表明,该方法在mAP、IoU等指标上均有显著提升,为工业视觉检测提供了有效解决方案。

2026-01-18 15:50:32 898

原创 榴莲识别新突破——YOLO11-seg与UniRepLKNetBlock融合实战教程

摘要:本文提出了一种融合YOLO11-seg与UniRepLKNetBlock的榴莲识别模型,通过5000张标注图像训练,在mAP@0.5达92.3%,FPS保持15帧以上。创新性地引入UniRepLKNetBlock模块增强特征提取能力,特别针对遮挡场景优化。实验显示该模型参数量15M内,在Jetson TX2嵌入式平台实现实时检测,果园实测准确率91.2%。完整项目资源包含训练代码、模型权重及部署方案,适用于农业自动化采摘系统。(150字)

2026-01-16 10:52:45 850

原创 无人机图像中的鸟类目标检测:使用YOLOv5-ACT提升检测精度与速度

摘要:本文提出一种改进的YOLOv5-ACT模型,用于提升无人机图像中的鸟类目标检测性能。针对传统YOLOv5在复杂背景下小目标检测的不足,该模型引入注意力机制和通道增强技术,显著提高了检测精度。实验结果显示,YOLOv5-ACT在保持实时处理速度的同时,mAP提升8.5个百分点。模型已成功应用于自然保护区鸟类监测项目,通过轻量化部署和边缘计算优化,在无人机平台上实现高效实时检测,为生态保护提供了可靠的技术支持。

2026-01-16 10:19:37 837

原创 钻斗设备部件识别与分类_yolo12-A2C2f-DFFN模型详解与应用

本文提出了一种改进的YOLOv12-A2C2f-DFFN模型,用于钻斗设备部件的精准识别与分类。通过构建包含6类部件的5411张图像数据集,并采用DFFN双频聚合机制和区域注意力模块,显著提升了模型在复杂工况下的检测性能。实验表明,改进模型在mAP@0.5指标上达到87.0%,较原始YOLOv12提升8.6%,且在低光照、遮挡等场景下表现出色。经轻量化处理后,模型可高效部署于边缘设备,实现30FPS实时检测,已成功应用于工业现场,识别准确率达92.7%,检测效率提升约8倍。

2026-01-16 08:51:07 654

原创 基于YOLOv10n-attention的印尼巴布亚蜡染图案识别与分类系统

本研究基于YOLOv10n-attention模型实现了印尼巴布亚蜡染图案的高效检测与分类,实验结果表明该方法在精度和效率方面均取得了良好效果。通过引入注意力机制,模型能够更准确地捕捉复杂背景下的图案特征,为蜡染文化的数字化保护提供了技术支持。然而,本研究仍存在一些局限性。首先,数据集规模相对有限,特别是某些稀有图案类别样本较少,可能影响模型对这些类别的识别能力。其次,模型在处理严重遮挡或极度变形的图案时,性能仍有提升空间。此外,当前系统主要关注图案识别,对于图案的文化内涵解读和风格分析尚未深入探索。

2026-01-15 14:26:25 719

原创 道路表面缺陷检测与路面结构识别_yolo13-C3k2-WDBB模型应用

🌟 本文详细介绍了YOLOv13-C3k2-WDBB模型在道路表面缺陷检测与路面结构识别中的应用。通过引入C3k2模块和WDBB结构,该模型在保持较高推理速度的同时,显著提升了检测精度,特别是在处理细长裂缝等复杂缺陷时表现突出。实验结果表明,该模型在自建数据集上达到了92.3%的mAP@0.5,F1值达到0.892,优于多种主流目标检测模型。实际应用中,该系统已成功部署于多个城市的道路检测项目,大幅提高了道路维护效率。如果你有任何问题或建议,欢迎在评论区留言交流。

2026-01-15 13:51:53 881

原创 船舶及其尾流检测_MS-RCNN详细实现与优化

本文详细介绍了基于MS-RCNN的船舶及尾流检测方法。首先阐述了尾流检测在海洋监测中的重要性,然后解析了MS-RCNN的多阶段检测架构原理及其数学基础。文章提供了完整的数据处理流程,包括公开数据集推荐、数据预处理方法和数据集划分策略。通过示例代码展示了模型构建过程,涵盖特征提取网络、多阶段检测头和训练流程实现。该检测系统能有效识别船舶类型、航向和速度,适用于海洋环境监测和军事侦察等应用场景。

2026-01-15 13:09:52 632

原创 【铁路检测】YOLO11-C3k2-StripCGLU模型在铁路轨道缺陷检测中的应用与改进

本文提出了一种改进的YOLO11-C3k2-StripCGLU模型用于铁路轨道缺陷检测。针对轨道缺陷检测的特殊需求,模型引入了C3k2模块进行多尺度特征融合和StripCGLU注意力机制增强特征表达能力。通过优化数据增强策略、损失函数和多尺度特征融合等方法,显著提升了检测精度。实验表明,改进模型在mAP@0.5指标上达到0.927,优于现有算法。实际应用中,该模型以35FPS的速度实现实时检测,已成功部署于多个铁路段。未来将进一步优化模型结构,提升小缺陷检测能力并探索轻量化部署方案。

2026-01-15 11:34:38 557

原创 yolo12-AFPN-P2345车辆检测与分类识别算法改进实现

本文提出了一种基于改进AFPN的YOLOv12车辆检测算法,通过优化特征金字塔结构和引入注意力机制提升检测性能。算法创新点包括:1) 自适应特征融合模块(ASFF)实现多尺度特征加权融合;2) CBAM注意力机制增强关键特征提取;3) 四尺度(P2345)检测机制提升小目标识别。实验表明,改进算法在10,000张多场景车辆数据集上达到85.3% mAP,比原始YOLOv12提升2.7个百分点,同时保持46 FPS的实时性。消融实验验证了各模块的有效性,实际部署中通过剪枝量化使模型缩小60%。该算法特别适用于

2026-01-12 11:29:55 750

原创 【YOLOv8改进】基于tood_x101-64x4d_fpn_ms-2x_coco的卡车过载检测与分类_1

本文提出了一种基于改进YOLOv8模型的卡车过载检测系统,采用tood_x101-64x4d_fpn_ms-2x_coco骨干网络提升特征提取能力。通过引入BiFPN特征融合和Focal Loss损失函数,有效解决了多尺度检测和类别不平衡问题。实验表明,改进模型在测试集上mAP@0.5达到0.938,比原始YOLOv8提升4.3个百分点。系统已在高速公路收费站试点部署,采用边缘计算架构实现实时检测。该研究为交通管理提供了高效的非接触式超载检测方案。

2026-01-12 10:46:31 738

原创 尿液样本中细胞与非细胞成分检测分类系统实现

本文介绍了一种基于STM32和图像处理技术的尿液成分检测分类系统。该系统通过高分辨率摄像头采集尿液样本图像,采用STM32F103作为主控芯片,配合图像处理算法实现尿液成分的自动识别。硬件设计包括OV5640摄像头模块、SD卡存储和3.5英寸触摸屏交互界面。软件方面实现了图像预处理(高斯滤波去噪、对比度增强)和细胞特征提取(质心、面积、周长、圆形度等),利用机器学习方法对红细胞、白细胞等成分进行分类。该系统有效提高了尿液分析的效率和准确性,为临床诊断提供了可靠支持。

2026-01-12 10:09:35 555

原创 水下环境中的智能垃圾检测与识别系统——基于改进的ATSS_R101_FPN模型训练与评估

本文提出一种改进的ATSS_R101_FPN模型用于水下垃圾智能检测。针对水下环境的光学散射、光照不均和颜色失真等挑战,模型通过多尺度特征融合、动态阈值调整和改进损失函数进行优化。实验表明,改进模型在标准数据集上达到85.7%的mAP@0.5,较原始ATSS提升3.2个百分点,同时保持15FPS的实时性能。该系统可部署于水下航行器和机器人,实现垃圾检测与避障功能。未来将探索轻量化设计和多模态融合以进一步提升性能。

2026-01-12 09:34:46 997

原创 轮胎制造商识别技术详解:基于VFNet的R101-FPN模型训练与COCO数据集应用_1

COCO(Common Objects in Context)是一个大型目标检测、分割和字幕生成数据集,包含超过33万张图像和80个类别的200万个实例。虽然COCO数据集不专门针对轮胎制造商识别,但其丰富的场景和多样化的目标为我们提供了良好的预训练基础。图5:COCO数据集样本示例本文详细介绍了一种基于VFNet的R101-FPN模型用于轮胎制造商识别的技术方案。通过在COCO数据集上的预训练和轮胎制造商数据集上的微调,我们实现了高精度的轮胎品牌识别,平均mAP达到0.89。扩大数据集。

2026-01-12 08:57:05 569

原创 【工业视觉检测】基于YOLOv8的皮带输送机关键部件检测与识别系统完整实现

本文基于YOLOv8算法,针对皮带输送机关键部件检测任务,提出了一种改进的YOLOv8-RSCD检测算法。通过引入RSCD特征融合机制、注意力模块和解耦头等优化措施,显著提升了检测精度,特别是在小目标检测方面表现突出。实验结果表明,改进后的算法在自建数据集上达到了89.3%的mAP@0.5,同时保持了较高的检测速度,能够满足工业实时检测需求。尽管如此,我们的研究仍存在一些不足之处。首先,模型在极端光照条件下的检测效果仍有提升空间;其次,对于新型部件的泛化能力有待进一步提高;

2025-12-19 18:47:13 1099

原创 【海滩垃圾检测与分类识别-基于改进YOLO13-seg-iRMB模型】

本文提出了一种改进的YOLO13-seg-iRMB模型用于海滩垃圾检测与分类。通过在YOLOv13基础上引入iRMB注意力机制、优化FPN结构和分割模块,并结合Focal Loss与CIoU Loss,模型在自建数据集上取得了0.842的mAP值,较原始模型提升9.9个百分点。实验采用NVIDIA RTX 3080硬件平台,使用数据增强和两阶段训练策略,最终模型在保持35FPS实时性能的同时,显著提高了对复杂背景下各类垃圾的检测精度。该系统已投入实际应用,为海滩环境保护提供了有效的技术支持。未来计划通过多模

2025-12-19 17:05:24 714

原创 背胶条分类识别:基于计算机视觉的修复状态差异检测与质量评估系统

本文介绍了一种基于计算机视觉的背胶条质量检测系统,采用Bootstrap 5前端和Python后端架构,结合深度学习技术实现自动化检测。系统通过图像预处理、特征提取和多标签分类算法,能够识别划痕、变形等多种缺陷,并计算综合质量评分。主要特点包括:模块化设计、响应式界面、多模型选择、95.2%的分类准确率,以及1.5张/秒的处理速度。该系统有效解决了传统人工检测效率低、主观性强的问题,为制造业提供了可靠的背胶条质量评估解决方案。

2025-12-17 09:10:37 978

原创 夜间收费站与道路场景多类型车辆检测与分类:基于Faster R-CNN R50 PAFPN的实现_1

本文研究了基于Faster R-CNN R50 PAFPN模型的夜间收费站及道路场景多类型车辆检测方法。针对夜间低光照、目标密集等挑战,采用改进的PAFPN特征融合网络结合注意力机制,提升多尺度特征提取能力。通过数据增强、迁移学习等策略优化模型训练,使用Adam优化器和StepLR学习率调度。实验表明,该方法能有效识别夜间场景下的各类车辆,为智能交通系统提供技术支持,具有较高的实用价值。

2025-12-17 08:31:12 720

原创 基于YOLO11-C3k2-JDPM的车牌识别系统优化与实现

本文提出了一种基于YOLO11-C3k2-JDPM的车牌识别系统优化方法。该系统通过创新设计的C3k2模块和JDPM特征融合机制,实现了多尺度特征自适应提取与检测定位任务联合优化。实验结果表明,该模型在公开数据集上达到95.8%的mAP,推理速度48FPS,优于现有YOLO系列算法。文章详细介绍了数据增强策略、两阶段训练方法及部署优化技术,为车牌识别系统提供了高效解决方案。该系统已在智能交通场景中成功应用,展现了良好的实时性和准确性。

2025-12-16 20:31:59 1010

原创 基于显微镜图像的体液细胞分类与异常检测:改进RetinaNet模型实现

本文提出一种改进的RetinaNet模型用于体液细胞的自动分类与异常检测。针对传统显微镜细胞分析依赖人工、效率低的问题,通过引入注意力机制增强细胞区域特征表达,改进特征金字塔网络的加权融合策略,并采用多任务学习框架同时处理分类、异常检测和计数任务。实验表明,改进模型在公开数据集上mAP达86.5%,较原始RetinaNet提升8.2%,尤其对小细胞和稀有细胞检测效果显著提升。临床应用显示系统可减少60%人工阅片时间,诊断一致性超90%,有效辅助尿液、脑脊液等体液分析。未来将优化模型轻量化并扩展更多细胞类型检

2025-12-16 19:36:39 1094

原创 基于YOLOv8-Slimneck-WFU模型的苹果目标检测实现

本文介绍了基于YOLOv8-Slimneck-WFU模型的苹果目标检测系统的实现过程。通过解耦头设计、anchor-free架构和SimOTA样本匹配等创新技术,该模型在苹果检测任务中取得了优异的性能。实际应用表明,该系统能够有效提升果园管理效率,减少资源浪费,具有良好的应用前景。未来,我们将继续优化模型性能,拓展应用场景,为智慧农业发展贡献力量。同时,我们也开源了部分代码和模型,希望更多研究者能够参与到农业计算机视觉的研究中来,共同推动农业智能化进程。

2025-12-14 18:39:21 704

原创 基于VFNet的安全装备检测系统Python实现(含代码+模型解析)

摘要: 本文介绍基于VFNet的安全装备检测系统,采用向量场引导的定位机制提升小目标检测精度。系统包含数据预处理、模型推理和结果可视化模块,支持多种部署方案。通过两阶段训练和边缘设备优化,在安全帽等8类防护装备检测任务中达到82.7% mAP,显著优于传统算法。该系统可实时监控工业场所安全装备佩戴情况,具有重要的工程应用价值。

2025-12-14 15:54:16 642

原创 卡簧目标检测基于改进YOLO11-C3k2-Star模型的实现

本文提出了一种基于改进YOLO11-C3k2-Star模型的卡簧目标检测方法,针对卡簧尺寸小、形态多样、背景复杂等检测难点进行优化。通过设计C3k2-Star模块增强特征提取能力,引入StarNet轻量化网络降低计算复杂度,并改进多尺度特征融合结构提升小目标检测性能。实验结果表明,改进模型在自建数据集上mAP@0.5达到0.924,比原始YOLO11提升2.3%,同时保持7.2ms的检测速度。消融实验验证了各改进模块的有效性,实际工业应用显示系统检测准确率超过95%,能适应复杂工业环境。该方案为工业微小零件

2025-12-11 13:40:31 689

原创 YOLO13-C3k2-MBRConv3:窗户检测与识别模型详解

本文提出了一种改进的YOLOv13窗户检测模型YOLO13-C3k2-MBRConv3,通过融合C3k2模块的高效特征提取和MBRConv3模块的多尺度融合能力,显著提升了窗户检测性能。实验结果表明,该模型在自建数据集上达到89.7%的mAP,比原始YOLOv13提高3.2%,同时保持45FPS的实时检测速度。模型优化了骨干网络结构,引入自适应特征融合机制,在复杂光照和遮挡场景下表现出更强的鲁棒性。研究公开了10,000张标注图像的数据集和完整源码,为智能建筑、自动驾驶等领域的窗户检测任务提供了高效解决方案

2025-12-11 13:12:24 922

原创 中医舌诊图像检测 _ YOLO11分割实现舌象识别系统

本文探讨了基于YOLO11分割模型的中医舌象识别系统实现。传统方法如颜色空间分割和边缘检测存在光照敏感、调参困难等局限。深度学习方法通过YOLO11模型的多尺度特征融合、锚框机制和优化损失函数,实现了更精确的舌体分割。文章详细介绍了数据集准备、模型训练流程,包括损失函数设计(分类、定位和分割损失)和PyTorch实现。该系统为中医诊断提供了客观、高效的舌象分析工具,相比传统方法具有更好的适应性和准确性。

2025-12-09 14:06:24 830

原创 基于MS-RCNN模型的锡罐检测识别系统 如何训练使用 R50 Caffe FPN COCO数据集

MS-RCNN是一种改进的目标检测算法,基于Faster R-CNN框架,通过引入多尺度特征融合机制提升检测性能。本文详细介绍了使用ResNet-50骨干网络和FPN特征金字塔在COCO数据集上训练MS-RCNN模型的过程。内容包括环境配置(PyTorch、Caffe等依赖安装)、数据集准备(COCO数据集下载与预处理)、模型配置(ResNet-50+FPN架构)以及训练流程。该模型特别适用于工业场景中锡罐等尺寸变化较大的目标检测任务,通过多尺度特征融合有效解决了小目标检测难题。文中提供了完整的代码实现和配

2025-12-09 13:33:51 773

原创 基于Mask-RCNN和Swin-Transformer的射击目标检测与分类系统

本文提出了一种结合Mask-RCNN和Swin-Transformer的射击目标检测与分类系统。该系统采用Mask-RCNN进行目标检测和实例分割,结合Swin-Transformer的特征提取能力,在射击目标数据集上实现了89.7%的mAP,主要目标检测精度达94.2%。通过数据预处理、模型优化和实时部署,系统在普通GPU上达到30FPS处理速度,优于传统方法。该系统可应用于军事训练、体育射击等领域,未来将进一步优化模型轻量化和多目标跟踪功能。

2025-12-07 11:48:31 972

原创 基于YOLOv8与PSConv改进算法的船舶识别与分类技术研究_大型小型船舶检测

目标检测是计算机视觉领域的核心任务之一,旨在从图像中定位并识别出感兴趣的目标。近年来,基于深度学习的目标检测算法取得了显著进展,主要可以分为两阶段检测器和单阶段检测器。两阶段检测器如Faster R-CNN首先生成候选区域,然后对每个区域进行分类和回归,通常精度较高但速度较慢;单阶段检测器如YOLO系列直接从图像中预测目标位置和类别,速度更快但精度略低。[7] 徐永伟, 等. 复杂环境下YOLO目标检测算法改进[J]. 计算机科学, 2021, 48(S2): 457-461.

2025-12-07 11:12:40 1524

原创 基于Mask R-CNN的鲨鱼牙齿图像识别系统:鹰鳐、灰鲨、巨齿鲨、沙虎鲨和锯齿鲨五种物种分类与特征提取

本文提出了一种基于改进Mask R-CNN的鲨鱼牙齿图像识别系统,能够对鹰鳐、灰鲨、巨齿鲨、沙虎鲨和锯齿鲨五种鲨鱼物种进行精确分类与特征提取。系统采用改进的特征金字塔网络和优化的多任务损失函数,在包含约10000张牙齿图像的数据集上实现了94.7%的准确率。通过背景去除、数据增强等预处理方法,结合Grad-CAM可视化技术,模型成功捕捉到牙齿形状、锯齿结构等关键特征。该系统为海洋生物学研究、渔业管理和生态保护提供了高效准确的自动化识别工具,未来可扩展更多物种并开发移动应用。

2025-12-06 10:26:03 652

原创 【传感器目标检测】基于YOLO11的传感器对象识别与分割系统

本文提出了一种基于YOLO11改进的传感器对象识别与分割系统YOLOV11-seg。通过引入Segment Head实现像素级分割,并采用C2PSA注意力机制增强特征提取能力。实验结果表明,在自建传感器数据集上,该方法在保持实时性的同时显著提升了分割性能(mAP@0.5达0.863,分割IoU为0.735)。该统一框架有效解决了传统方法在复杂环境下识别精度不足的问题,为智能传感系统的开发提供了新思路。

2025-12-05 19:23:33 848

原创 安全监控下人员行为识别与危险动作检测:VFNet改进方案详解

本文提出了一种改进的VFNet算法,用于工业安全监控场景下的人员行为识别与危险动作检测。该方案通过引入空间-时间注意力机制、优化多尺度特征融合和设计轻量化检测头,显著提升了模型性能。实验表明,改进后的VFNet平均精度达到92.3%,推理速度提升40%,模型大小减少25.8%。系统采用分层架构设计,包含数据预处理、模型训练优化和实时推理等模块,支持25FPS的实时处理,并具备直观的可视化界面和报警功能,为工业安全生产提供了有效的技术保障。

2025-12-05 18:51:11 760

原创 基于YOLO11-SEG-AFPN-P345的工业管道及附属设备智能检测与识别系统

基于YOLO11-SEG-AFPN-P345的工业管道及附属设备智能检测与识别系统,通过深度学习技术实现了对工业设备和管道的高精度、实时检测。系统结合了目标检测与实例分割技术,能够适应各种复杂的工业环境,大大提高了工业安全管理的效率和准确性。随着技术的不断进步,该系统将在工业安全领域发挥越来越重要的作用,为工业安全生产提供强有力的技术保障。我们相信,通过持续的技术创新和应用实践,该系统将为工业安全检测领域带来革命性的变化。工业管道系统作为现代工业生产的重要基础设施,其安全运行对整个生产过程至关重要。

2025-12-03 15:19:47 775

原创 基于YOLO11的药粒识别与分类:ASF动态采样方法详解

YOLO11(You Only Look Once)是目前最先进的实时目标检测算法之一。与之前的版本相比,YOLO11在保持高检测速度的同时,显著提升了小目标检测的精度。这对于药粒这种通常尺寸较小且形态多样的目标来说,简直是量身定制的解决方案!💊YOLO11采用了创新的CSP(Cross Stage Partial)结构和PANet(Path Aggregation Network)结构,使得特征提取更加高效。

2025-12-03 14:19:44 962

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除