读书笔记
微知girl
我是NLP相关方向研究生,小白一枚,梦想自己有一天能混成业界大牛,文章或代码有任何错误欢迎指出,不胜感激~ 如果觉得对您有用请关注点赞,(#^.^#) 希望大家能一起探讨相关方面问题,互相学习,互相进步,(●'◡'●)~~
展开
-
知识图谱 概念与技术 第一章 第二章
第一章知识图谱概述 1.1基本概念 实体、概念、值 1.2知识图谱的历史沿革 百科、社区、论坛、问答平台等,大量高质量的用户生成内容 1.3知识图谱的研究意义 1.4应用价值 数据分析 智慧搜索 智能推荐 人机交互 决策支持 1.5分类 现有的知识图谱: 第二章基础知识 2.1概述 2.2知识表示 图表示:基于图的表示,基于三元组的表示 数值表示:基于距离SE模型,基于翻译:TransE、TransH、TransD、TransR等 其他...原创 2020-11-16 18:34:28 · 278 阅读 · 0 评论 -
知识图谱 概念与技术 第四章
知识图谱 概念与技术 肖仰华等编著 中国工信出版集团 电子工业出版社 第四章 关系抽取 概述 基于学习的抽取 基于模式的抽取 开放关系抽取 概述 关系抽取-> 关系实例->知识图谱的边 ①人工 --> 代价大,人工仅对关系进行少量的增补和修改 ②关系数据库中转换规则获取关系实例(人工定义规则相应映射规则完成自动转换)--》结构化数据规模有限,无法获取更广泛存在的结构化数据 应用: 关系抽取 上游应用 构建知识图谱,下游应用:文本理解、问答系统、聊天机...原创 2020-09-28 17:48:56 · 757 阅读 · 0 评论 -
知识图谱 概念与技术 第三章
知识图谱 概念与技术 肖仰华等编著 中国工信出版集团 电子工业出版社 第三章 词汇挖掘与实体识别 知识图谱中的实体识别基本思路: 当一个词汇在某个上下文表达的是某个预定义概念时,则是一个实体。 例如“刘德华是中国香港男歌手” 中“刘德华”属于“人物” 等价关系、等级关系、相关关系 等价关系:简写等 等级关系:子类,细分等 相关关系:上下位关系、索引关系等 (例如“复旦大学 ”和“985院校“为上下位关系 短语抽取 短语:描述一个完整、不可分割的语义单元 短语质量评估:频...原创 2020-09-28 17:38:35 · 597 阅读 · 0 评论