2014年山东省第五届ACM大学生程序设计竞赛--Hearthstone II(第二类Stirling数)

本文介绍了一个关于比赛分组的问题:给定n场比赛和m个不同的队伍,在确保每个队伍至少参加一次的情况下,计算所有可能的比赛安排方式。通过使用第二类斯特林数的概念,文章详细解释了如何递归计算这些分组的可能性。
摘要由CSDN通过智能技术生成
                                                                                                                                  Hearthstone II
                                                                                            Time Limit: 2000ms   Memory limit: 65536K  有疑问?点这里^_^
题目描述
The new season has begun, you have n competitions and m well prepared decks during the new season. Each competition you could use any deck you want, but each of the decks must be used at least once. Now you wonder how many ways are there to plan the season — to decide for each competition which deck you are going to used. The number can be very huge, mod it with 10^9 + 7.
 
输入
The input ?le contains several test cases, one line for each case contains two integer numbers n and m (1?≤?m?≤?n?≤?100).
 
输出

One line for each case, output one number — the number of ways.

示例输入

3 2
100 25

示例输出

6
354076161

提示
 
来源
2014年山东省第五届ACM大学生程序设计竞赛

题意:n场比赛,m个桌子可以用,每个桌子至少用一次,求有多少种分法。。。
思路:可以想象为将n个不同的球放入m个不同的盒子中,有多少种情况。。
先说一下第二类Stirling数:
     s[n][m]:  将n个不同的球放入m个相同的盒子中得放法。
考虑第n个球的放法,
      1、如果第n个球单独放在第m个盒中,有s[n-1][m-1]种放法。
      2、如果前n-1个球放在m个盒中,则第n个球可以放在任意盒中,有s[n-1][m]*m种。
   
  递推公式为:s[n][m]=s[n-1][m-1]+s[n-1][m]*m;

但本题中是m个不同的桌子,故最后结果为:m!*s[n][m];

以下AC代码:

#include<stdio.h>  
#include<string.h>  
long long mod=1e9+7;  
int n,m;  
long long s[105][105];  
long long factoria(int n,int m)  
{  
    long long ans=1;  
    for(int i=2;i<=m;i++)  
    {  
        ans*=i;  
        if(ans>=mod)  
            ans%=mod;  
    }  
    return ans;  
}  
void  stirling()  
{   ///打表  
    memset(s,0,sizeof(s));  
    s[1][1]=1;  
    for(int i=2;i<=104;i++)  
        for(int j=1;j<=i;j++)  
            {  
                s[i][j]=s[i-1][j-1]+j*s[i-1][j];  
                if(s[i][j]>=mod)  
                    s[i][j]%=mod;  
            }  
}  
int main()  
{  
     stirling();  
    while(~scanf("%d%d",&n,&m))  
    {  
        printf("%lld\n",factoria(n,m)*s[n][m]%mod);  
    }  
    return 0;  
}  



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值