DataWhale图网络学习(一)图论基础知识

1 图的表示

1.1 图的定义(图)

  • 一个图被记为 G = { V , E } \mathcal{G}=\{\mathcal{V}, \mathcal{E}\} G={V,E},其中 V = { v 1 , … , v N } \mathcal{V}=\left\{v_{1}, \ldots,v_{N}\right\} V={v1,,vN}是数量为 N = ∣ V ∣ N=|\mathcal{V}| N=V 的节点的集合 E = { e 1 , … , e M } \mathcal{E}=\left\{e_{1}, \ldots, e_{M}\right\} E={e1,,eM} 是数量为 M M M 的边的集合。
  • 图用结点表示实体,用边表示实体之间的关系。
  • 节点和边的信息可以是类别型的(称为标签),也可以是数值型**的(称为属性)。

1.2 邻接矩阵

  • 给定一个图 G = { V , E } \mathcal{G}=\{\mathcal{V}, \mathcal{E}\} G={V,E},其对应的邻接矩阵被记为 A ∈ { 0 , 1 } N × N \mathbf{A} \in\{0,1\}^{N \times N} A{0,1}N×N A i , j = 1 \mathbf{A}_{i, j}=1 Ai,j=1表示存在从节点 v i v_i vi v j v_j vj的边,反之表示不存在从节点 v i v_i vi v j v_j vj的边。
  • 无向图中,邻接矩阵是对称的;有向图中,邻接矩阵可以是不对成的
  • 无权图中,各条边的权重被认为是等价的,即认为各条边的权重为 1 1 1;在有权图中,其对应的邻接矩阵通常被记为 W N × N \mathbf{W} ^{N \times N} WN×N,其中 W i , j = w i j \mathbf{W}_{i, j}=w_{ij} Wi,j=wij表示从节点 v i v_i vi v j v_j vj的边的权重。若边不存在时,边的权重为 0 0 0

无向图


在这里插入图片描述
有向图


在这里插入图片描述
加权图
在这里插入图片描述

2 图的属性

2.1 节点的度

  • 对于有向有权图,节点 v i v_i vi的出度等于从 v i v_i vi出发的边的权重之和,节点 v i v_i vi的入度等于连向 v i v_i vi的边的权重之和。
  • 对于无向图,出度与入度相等,为节点所连边的数量。
  • 节点 v i v_i vi的度记为 d ( v i ) d(v_i) d(vi),入度记为 d i n ( v i ) d_{in}(v_i) din(vi),出度记为 d o u t ( v i ) d_{out}(v_i) dout(vi)

2.2 邻接节点

  • 节点 v i v_i vi的邻接节点为与节点 v i v_i vi直接相连的节点,其被记为** N ( v i ) \mathcal{N(v_i)} N(vi)**。
  • **节点 v i v_i vi k k k跳远的邻接节点(neighbors with k k k-hop)**指的是到节点 v i v_i vi要走 k k k步的节点(一个节点的 2 2 2跳远的邻接节点包含了自身)。

2.3 行走

  • w a l k ( v 1 , v 2 ) = ( v 1 , e 6 , e 5 , e 4 , e 1 , v 2 ) walk(v_1, v_2) = (v_1, e_6,e_5,e_4,e_1,v_2) walk(v1,v2)=(v1,e6,e5,e4,e1,v2),这是一次“行走”,它是一次从节点 v 1 v_1 v1出发,依次经过边 e 6 , e 5 , e 4 , e 1 e_6,e_5,e_4,e_1 e6,e5,e4,e1,最终到达节点 v 2 v_2 v2的“行走”。
  • 在“行走”中,节点是允许重复的。

在这里插入图片描述

2.4 邻接矩阵A的n次方

有一图,其邻接矩阵为 A \mathbf{A} A, A n \mathbf{A}^{n} An为邻接矩阵的 n n n次方,那么 A n [ i , j ] \mathbf{A}^{n}[i,j] An[i,j]等于从节点 v i v_i vi到节点 v j v_j vj的长度为 n n n的行走的个数。(也就是,以节点 v i v_i vi为起点,节点 v j v_j vj为终点,长度为 n n n的节点访问方案的数量,节点访问中可以兜圈子重复访问一些节点)。

2.5 路径

路径是节点不重复的“行走”。

2.6 子图

有一图 G = { V , E } \mathcal{G}=\{\mathcal{V}, \mathcal{E}\} G={V,E},另有一图 G ′ = { V ′ , E ′ } \mathcal{G}^{\prime}=\{\mathcal{V}^{\prime}, \mathcal{E}^{\prime}\} G={V,E},其中 V ′ ∈ V \mathcal{V}^{\prime} \in \mathcal{V} VV E ′ ∈ E \mathcal{E}^{\prime} \in \mathcal{E} EE并且 V ′ \mathcal{V}^{\prime} V不包含 E ′ \mathcal{E}^{\prime} E中未出现过的节点,那么 G ′ \mathcal{G}^{\prime} G G \mathcal{G} G的子图。

2.7 连通分量

给定图 G ′ \mathcal{G}^{\prime} G是图 G \mathcal{G} G的子图。记属于图 G \mathcal{G} G但不属于 G ′ \mathcal{G}^{\prime} G图的节点集合记为 V / V ′ \mathcal{V}/\mathcal{V}^{\prime} V/V 。如果属于 V ′ \mathcal{V}^{\prime} V的任意节点对之间存在至少一条路径,但不存在一条边连接属于 V ′ \mathcal{V}^{\prime} V的节点与属于 V / V ′ \mathcal{V}/\mathcal{V}^{\prime} V/V的节点,那么图 G ′ \mathcal{G}^{\prime} G是图 G \mathcal{G} G的连通分量。
在这里插入图片描述
左右两边子图都是整图的连通分量。

2.8 连通图

当一个图只包含一个连通分量,即其自身,那么该图是一个连通图。

2.9 最短路径

v s , v t ∈ V v_{s}, v_{t} \in \mathcal{V} vs,vtV 是图 G = { V , E } \mathcal{G}=\{\mathcal{V}, \mathcal{E}\} G={V,E}上的一对节点,节点对 v s , v t ∈ V v_{s}, v_{t} \in \mathcal{V} vs,vtV之间所有路径的集合记为 P s t \mathcal{P}_{\mathrm{st}} Pst。节点对 v s , v t v_{s}, v_{t} vs,vt之间的最短路径 p s t s p p_{\mathrm{s} t}^{\mathrm{sp}} pstsp P s t \mathcal{P}_{\mathrm{st}} Pst中长度最短的一条路径,其形式化定义为:
p s t s p = arg ⁡ min ⁡ p ∈ P s t ∣ p ∣ p_{\mathrm{s} t}^{\mathrm{sp}}=\arg \min _{p \in \mathcal{P}_{\mathrm{st}}}|p| pstsp=argpPstminp
其中, p p p表示 P s t \mathcal{P}_{\mathrm{st}} Pst中的一条路径, ∣ p ∣ |p| p是路径 p p p的长度。

2.10 直径

给定一个连通图 G = { V , E } \mathcal{G}=\{\mathcal{V}, \mathcal{E}\} G={V,E},其直径为其所有节点对之间的最短路径的最大值,形式化定义为:
diameter ⁡ ( G ) = max ⁡ v s , v t ∈ V min ⁡ p ∈ P s t ∣ p ∣ \operatorname{diameter}(\mathcal{G})=\max _{v_{s}, v_{t} \in \mathcal{V}} \min _{p \in \mathcal{P}_{s t}}|p| diameter(G)=vs,vtVmaxpPstminp

2.11 拉普拉斯矩阵

给定一个图 G = { V , E } \mathcal{G}=\{\mathcal{V}, \mathcal{E}\} G={V,E},其邻接矩阵为 A A A,度矩阵为 D D D,其拉普拉斯矩阵为:
L = D − A \mathbf{L=D-A} L=DA
其规范化的拉普拉斯矩阵定义为:
L = D − 1 2 ( D − A ) D − 1 2 = I − D − 1 2 A D − 1 2 \mathbf{L=D^{-\frac{1}{2}}(D-A)D^{-\frac{1}{2}}=I-D^{-\frac{1}{2}}AD^{-\frac{1}{2}}} L=D21(DA)D21=ID21AD21

3 图的种类

  • 同质图:只有一种类型的节点和一种类型的边的图。
  • 异质图:存在多种类型的节点和多种类型的边的图。
  • 二部图:节点分为两类,只有不同类的节点之间存在边。

4 图结构数据上的机器学习

  1. 节点预测:预测节点的类别或某类属性的取值
    1. 例子:对是否是潜在客户分类、对游戏玩家的消费能力做预测
  2. 边预测:预测两个节点间是否存在链接
    1. 例子:Knowledge graph completion、好友推荐、商品推荐
  3. 图的预测:对不同的图进行分类或预测图的属性
    1. 例子:分子属性预测
  4. 节点聚类:检测节点是否形成一个社区
    1. 例子:社交圈检测
  5. 其他任务
    1. 图生成:例如药物发现
    2. 图演变:例如物理模拟

5 图结构数据的特点和挑战

5.1 图结构数据的特点

图数据是非规则的非结构化的,它具有以下的特点:

  • 任意的大小和复杂的拓扑结构;
  • 没有固定的节点排序或参考点;
  • 通常是动态的,并具有多模态的特征;
  • 图的信息并非只蕴含在节点信息和边的信息中,图的信息还包括了图的拓扑结构。

5.1 深度学习在图结构数据上所面临的挑战

以往的深度学习模型是为结构化数据设计的,而无法适应非结构化数据。对于图这种非结构化数据要求深度学习模型具有如下特点:

  • 适用于不同度的节点
  • 节点表征的计算与邻接节点的排序无关
  • 不但能够根据节点信息、邻接节点的信息和边的信息计算节点表征,还能根据图拓扑结构计算节点表征

在这里插入图片描述

这俩图节点数量、类别均相等;变得数量也相等;各节点的度也相等,但是拓扑结构不同,因此需要深度学习模型能够区分这俩图。

参考:
DataWhale开源内容

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值