POJ 3233 Matrix Power Series 解题报告(子矩阵构造+矩阵快速幂)

96 篇文章 0 订阅
6 篇文章 0 订阅
Matrix Power Series
Time Limit: 3000MS Memory Limit: 131072K
Total Submissions: 14105 Accepted: 6078

Description

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3

Source

POJ Monthly--2007.06.03, Huang, Jinsong

   

    解题报告: 求矩阵的n次方和。

    如果接触过矩阵,都知道矩阵快速幂。一开始我也这么做的,二分计算前半段和后半段,即(A^1+A^2+...+A^(n/2))*(A^(n/2)+I)。题目是A了,但是耗时1600MS+。

    看了一下Status,发现一堆0MS的……又想到整数的n次方和是有公式的,那么矩阵有吗?

    百度了一下解题报告,发现了一个非常巧妙的方法:(引用:http://www.cnblogs.com/rainydays/archive/2011/02/21/1960189.html

把问题转化以加速,令

B = A  I

      0  I

则B^(k + 1) = A^(k + 1)      I + A + A2 + A3 + … + Ak

                            0                          I

用二分法求B^(k + 1)

    根据该性质,复杂度大大减小。另外矩阵相乘时每次最后再取模,会快上很多。

    代码如下:

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;

typedef long long LL;
const int SIZE = 60;
int n, mod;

struct Matrix
{
    int a[SIZE][SIZE];
    Matrix(int t=0)
    {
        memset(a, 0, sizeof(a));
        for(int i=0;i<SIZE;i++) a[i][i]=t;
    }

    Matrix operator*(const Matrix& b) const
    {
        Matrix c;
        for(int i=0;i<n;i++) for(int j=0;j<n;j++)
        {
            LL sum=0;
            for(int k=0;k<n;k++) sum+=a[i][k]*b.a[k][j];
            c.a[i][j]=sum%mod;
        }
        return c;
    }
};

Matrix pow(Matrix a, int b)
{
    Matrix res(1);
    while(b)
    {
        if(b&1)
            res=res*a;
        a=a*a;
        b>>=1;
    }
    return res;
}

int main()
{
    int k;
    while(~scanf("%d%d%d", &n, &k, &mod))
    {
        Matrix a;
        for(int i=0;i<n;i++) for(int j=0;j<n;j++)
            scanf("%d", &a.a[i][j]), a.a[i][j]%=mod;

        for(int i=0;i<n;i++)
            a.a[i][i+n]=a.a[i+n][i+n]=1;

        n<<=1;
        a = pow(a, k+1);
        n>>=1;

        for(int i=0;i<n;i++)
            if(a.a[i][i+n]==0)
                a.a[i][i+n]=mod-1;
            else
                a.a[i][i+n]--;

        for(int i=0;i<n;i++, puts("")) for(int j=0;j<n;j++)
            printf("%d ", a.a[i][j+n]);
    }
}

    同样附上二分的代码:

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;

int n, mod;

struct Matrix
{
    int a[30][30];
    Matrix(int t=0)
    {
        memset(a, 0, sizeof(a));
        for(int i=0;i<30;i++) a[i][i]=t;
    }

    Matrix operator*(const Matrix& b) const
    {
        Matrix c;
        for(int i=0;i<n;i++) for(int j=0;j<n;j++)
            for(int k=0;k<n;k++) c.a[i][j]=(c.a[i][j]+a[i][k]*b.a[k][j])%mod;
        return c;
    }

    Matrix operator+(const Matrix& b) const
    {
        Matrix c;
        for(int i=0;i<n;i++) for(int j=0;j<n;j++)
            c.a[i][j]=(a[i][j]+b.a[i][j])%mod;
        return c;
    }
} one(1);

Matrix pow(Matrix a, int b)
{
    Matrix res(1);
    while(b)
    {
        if(b&1)
            res=res*a;
        a=a*a;
        b>>=1;
    }
    return res;
}

Matrix powSum(Matrix a, int b)
{
    if(b==0)
        return one;
    else if(b==1)
        return a;
    else if(b%2==0)
        return powSum(a, b/2)*(pow(a, b/2)+one);
    else
        return powSum(a, b/2)*(pow(a, b/2)+one)+pow(a, b);
}

int main()
{
    int k;
    while(~scanf("%d%d%d", &n, &k, &mod))
    {
        Matrix a;
        for(int i=0;i<n;i++) for(int j=0;j<n;j++)
            scanf("%d", &a.a[i][j]), a.a[i][j]%=mod;

        a = powSum(a, k);
        for(int i=0;i<n;i++) for(int j=0;j<n;j++)
            printf("%d", a.a[i][j]%mod), printf(j==n-1?"\n":" ");
    }
}

    同样的,一个数的n次方和再模一个数也可以这样做。公式求法中需要除以一个数,而这个数在模mod系下不一定有逆元,所以用矩阵二分来做是个不错的方法。(和队友JX讨论的)。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是Java解决POJ3233矩阵幂序列问题的代码和解释: ```java import java.util.Scanner; public class Main { static int n, k, m; static int[][] A, E; public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); k = sc.nextInt(); m = sc.nextInt(); A = new int[n][n]; E = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { A[i][j] = sc.nextInt() % m; E[i][j] = (i == j) ? 1 : 0; } } int[][] res = matrixPow(A, k); int[][] ans = matrixAdd(res, E); printMatrix(ans); } // 矩阵乘法 public static int[][] matrixMul(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { c[i][j] = (c[i][j] + a[i][k] * b[k][j]) % m; } } } return c; } // 矩阵快速幂 public static int[][] matrixPow(int[][] a, int b) { int[][] res = E; while (b > 0) { if ((b & 1) == 1) { res = matrixMul(res, a); } a = matrixMul(a, a); b >>= 1; } return res; } // 矩阵加法 public static int[][] matrixAdd(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { c[i][j] = (a[i][j] + b[i][j]) % m; } } return c; } // 输出矩阵 public static void printMatrix(int[][] a) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { System.out.print(a[i][j] + " "); } System.out.println(); } } } ``` 解释: 1. 首先读入输入的n、k、m和矩阵A,同时初始化单位矩阵E。 2. 然后调用matrixPow函数求出A的k次幂矩阵res。 3. 最后将res和E相加得到结果ans,并输出。 4. matrixMul函数实现矩阵乘法,matrixPow函数实现矩阵快速幂matrixAdd函数实现矩阵加法,printMatrix函数实现输出矩阵

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值