leetcode之Best Time to Buy and Sell Stock

Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
题目描述:你有一个数组,第i个元素代表第i天股票的价格,设计一个算法获得最大的利润(买股票之前必须先卖掉手中的股票)
问题1:Best Time to Buy and Sell Stock I,你至多买一次股票
思路:一维动态规划,记maxprofile[i]表示到i天为止最大的收益,minprices表示第i天为止最小的买入价格,那么递推关系式如下:
maxprofile[i] = max(maxprofile[i-1], prices[i] - minprices)
也就是第i天的最大收益为:max(第i-1天的最大收益,以最小价格买入,第i天的价格卖出的收益)
O(n)时间复杂度,O(1)空间复杂度
代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        if(len < 2)
            return 0;
        int minPrices = prices[0];//到当前位置i为止的最小价格
        int maxProfile = 0;
        for(int i = 1; i < len; ++i){
            minPrices = min(prices[i], minPrices);
            maxProfile = max(maxProfile, prices[i] - minPrices);
        }
        return maxProfile;
    }
};

问题2:Best Time to Buy and Sell Stock II,不限制你的买入次数,求最大收益
思路:贪心算法,从前向后遍历数组,只要当天的价格高于前一天的价格,就算入收益。
O(n)时间复杂度,O(1)空间复杂度,代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        if(len < 2)
            return 0;
        int maxProfile = 0;
        for(int i = 1; i < len; ++i){
            int diff = prices[i] - prices[i-1];
            if(diff > 0)
                maxProfile += diff;
        }
        return maxProfile;
    }
};

问题3:Best Time to Buy and Sell Stock III 最多购买2次股票,求最大收益
思路:动态规划,将数组以第i天划分为两半,l[i], r[i]。其中l[i]表示第i天之前的最大收益,r[i]表示第i天之后的最大收益,那么max(l[i]+r[i])(0<=i<=len-1),即为最大收益,而l[i]与r[i]的求法同Best Time to Buy and Sell Stock I,O(n)时间复杂度,O(n)空间复杂度。
代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        if(len < 2)
            return 0;
        int *l = new int[len];
        int *r = new int[len];
        l[0] = 0;
        int m = prices[0];//最低买入价格
        for(int i = 1; i < len; ++i){
            l[i] = max(l[i-1], prices[i]-m);
            m = min(prices[i], m);
        }
        r[len-1] = 0;
        m = prices[len-1];//最高卖出价格
        for(int i = len - 2; i >= 0; --i){
            r[i] = max(r[i+1], m - prices[i]);
            m = max(prices[i], m);
        }
        m = 0;
        for(int i = 0; i < len; ++i)
            m = max(m, r[i]+l[i]);
        return m;
    }
};

问题4:Best Time to Buy and Sell Stock IV,最多进行k此交易,求最大收益
思路:采用动态规划法求解,定义变量g[i][j]表示到第i天为止最多进行j次交易的最大收益,即全局最优,l[i][j]表示到第i天为止进行最多j次交易并且最后一次交易在当天(第i天)进行的最大收益,即局部最优,那么有如下递推关系式:
g[i][j] = max(g[i-1][j], l[i][j]),第i天进行至多j次的最大收益要么为第i-1天进行至多j次的最大收益,要么为最后一次交易在第i天进行的至多j次交易的最大收益。
l[i][j] = max(g[i-1][j-1] + max(0, prices[i] - prices[i-1]), l[i-1][j] + prices[i] - prices[i-1])
l[i][j]由两个变量构成,全局进行到i-1天至多j-1次交易(g[i-1][j-1]),在第i天进行一次交易(如果赚钱);局部进行到第i-1天至多进行j次交易,加上第i天的交易,不管是否赚钱(否则不满足最后一次交易在当天进行的前提)。该算法的时间复杂度为O(nk),空间复杂度为O(k)(调优后的结果),如果k远大于数组大小时,算法的效率比较底下,因此可以采用Best Time to Buy and Sell Stock II不限次数的解法。
代码如下:

class Solution {
public:
    int maxProfits(vector<int>& prices) {//不限次数
        int maxProfiles = 0;
        int len = prices.size();
        for(int i = 1; i < len; ++i)
            maxProfiles = max(maxProfiles, maxProfiles + prices[i]-prices[i-1]);
        return maxProfiles;
    }
    int maxProfit(int k, vector<int>& prices) {
        int len = prices.size();
        if(len < 2)
            return 0;
        if(k > len)
            return maxProfits(prices);
        vector<int> l(k + 1, 0);
        vector<int> g(k + 1, 0);
        for(int i = 1; i < len; ++i){
            int diff = prices[i] - prices[i-1];
            for(int j = k; j >= 1; --j){
                l[j] = max(g[j-1]+max(diff, 0), l[j]+diff);
                g[j] = max(g[j], l[j]);
            }
        }
        return g[k];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值